\(\left(\sqrt{2x-1}+1\right)^2-1=0\)
\(\left(\sqrt{2x-1}+1\right)^2=1\)
Th1: \(\sqrt{2x-1}+1=-1\)
\(\sqrt{2x-1}=-2\)
\(\Rightarrow x\in\varphi\)
Th2:\(\sqrt{2x-1}+1=1\)
\(\sqrt{2x-1}=0\)
\(\Rightarrow2x-1=0\)
\(2x=1\)
\(x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
\(\Leftrightarrow\sqrt{2x-1}.\left(\sqrt{2x-1}+2\right)=0\)
\(2x-1=0\Leftrightarrow x=\frac{1}{2}\)
\(\sqrt{2x-1}+2=0\Leftrightarrow\sqrt{2x-1}=-2\left(VN\right)\)
Vậy nghiệm của phương trình là 1/2