Ta sẽ chứng minh tồn tại các số tự nhiên m,p sao cho :
96 000 .. 000 + a + 15p < 97 000 .... 000
m chữ số 0 m chữ số 0
Tức là : \(96\frac{a}{10^m}+\frac{15p}{10^m}< 97\left(1\right)\).Gọi \(a+15\)là số có \(k\)chữ số : \(10^{k1}a+15< 10^k\)
\(\Rightarrow\frac{1}{10}\le\frac{a}{10^k}+\frac{15}{10^k}< 1\left(2\right).\)Đặt \(x_n=\frac{a}{10^k}+\frac{15p}{10^k}\). Theo \(\left(2\right)\)
Ta có : \(x_1< 1\)và \(\frac{15}{10^k}< 1\)
Cho \(n\)nhận lần lượt các giá trị \(2;3;4;...;\)các giá trị nguyên của \(x_n\)tăng dần ,mỗi lần tăng không quá 1 đơn vị , khi đó [ \(x_n\)sẽ trải qua các giá trị \(1,2,3,\)Đến một lúc ta có \(\left[x_p\right]=96\).Khi đó \(96x_p\)tức là \(96\frac{a}{10^k}+\frac{15p}{10^k}< 97\). Bất đẳng thức \(\left(1\right)\)đợt chứng minh
Bạn ơi, mình k hiểu cho lắm. Cách này mình cũng biết, nhưng k làm vì k hiểu?
- Tớ biết cách đấy nhưng k hiểu, trên mạng cũng chỉ có cách đó thôi !
Chứng minh thế này được ko?
Bất phương trình biến n nguyên
(I) : 96.10{a}+2 < a + 15n < 97.10{a}+2 luôn có ít nhất 2 nghiệm n dương với mọi a>0. Ký hiệu {a} là phần nguyên vượt quá a của a.
Thực vậy,
(I) <=> 96.10{a}+2 - a < 15n < 97.10{a}+2 - a (*)
\(\Leftrightarrow\frac{96\cdot10^{\left\{a\right\}+2}-a}{15}< n< \frac{97\cdot10^{\left\{a\right\}+2}-a}{15}.\)(**)
Với mọi a > 1 thì a < 2a < 10a < 10{a}+2 < 96.10{a}+2 Do đó chặn dưới (96.10{a}+2 - a) của (*) luôn > 0. Còn nếu 0<a<1 thì (96.10{a}+2 - a) >0 là đương nhiên.
Xét hiệu 2 khoảng chặn dương của (*): (97.10{a}+2 - a) - (96.10{a}+2 - a) = 10{a}+2 > 100
Nên hiệu 2 khoảng chặn dương của (**) > 100/15 > 6.
Nên bất phương trình (**) luôn có ít nhất 4 nghiệm n nguyên dương (trừ nhiều nhất 2 nghiệm ở mỗi khoảng chặn)
Hay BPT (I) có ít nhất 4 nghiệm n nguyên.
Mà (I) viết lại thành: 9600...00 ({a}+2 số 0) < a + 15n < 9700...000 ({a}+2 số 0) có ít nhất 4 nghiệm n nguyên
Hay Ít nhất 4 Số có dạng a + 15n có 2 chữ số đầu là 96.
(Cách CM này có thể CM có vô số sô dạng 2n + 15 có 2 chữ số đầu tiên là 96 hay bất kỳ).
đáp số gióng trên các bạn chọn cho mik đi mik làm cách 2 cho