Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tran trac bach diep

C=3 + 3^3 + 3^5 +...+ 3^1989 + 3^1991

chứng minh rằng C chia hết cho 13

và C chia hết 41

Thanh Tùng DZ
9 tháng 10 2016 lúc 12:17

C=3 + 3^3 + 3^5 +...+ 3^1989 + 3^1991

C = ( 3 + 3^3 + 3^5 ) + ( 3^7 + 3^9 + 3^ 11 ) + ... + ( 3^1987 + 3^1989 + 3^1991 )

C = 273                   + 3^6 . ( 3 + 3^3 + 3^5 ) + ... + 3^1986 . ( 3 + 3^3 + 3^5 )

C = 273 + 3^6 . 273 + ... + 3^1986 . 273

C = 273 . ( 3^6 + ... + 3^1986 ) 

C = 21 . 13 . ( 3^6 + ... + 3^1986 ) chia hết 13  

C=3 + 3^3 + 3^5 +...+ 3^1989 + 3^1991

C = ( 3 + 3^3 + 3^5 + 3^7 ) + ( 3^9 + 3^11 + 3^ 13 + 3^15 ) +  ... + ( 3^1985 + 3^1987 + 3^1989 + 3^1991 )

C = 2460                       + 3^8 . ( 3 + 3^3 + 3^5 + 3^7 ) +  .... + 3^1984 . ( 3 + 3^3 + 3^5 + 3^7 )

C = 2460   + 3^8 . 2460 ... + 3^1984 . 2460

C = 2460 . ( 3^8 + ... + 3^1984 )

C = 60 . 41 . ( 3^8 + ... + 3^1984 ) chia hết 41

nguyễn phạm như quỳnh
9 tháng 10 2016 lúc 12:26

C=3.1+(33.1+33.32)....(31989.1+31989.32)

C=3.1+33(1+32)......31989(1+32)        [ta có (1991-1) :2=995cặp]

C=3.1+33.10+...+31989.10

C=(3+10).(33+...31989)

C=13.(33.31989)

vậy c chia hết cho 13 còn câu b cậu làm tương tự nhé!

có thể câu a mình làm sai. mong cậu thứ lỗi


 

Ad
14 tháng 10 2018 lúc 8:46

a) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4\right)+3^7\times\left(1+3^2+3^4\right)+...+3^{1987}\times\left(1+3^2+3^4\right)\)

\(=3\times91+3^7\times91+...+3^{1987}\times91\)

\(=3\times7\times13+3^7\times7\times13+...+3^{1987}\times7\times13\)

\(=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)

Vì \(A=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)nên A chia hết cho 13.

b) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4+3^6\right)+...+3^{1985}\times\left(1+3^2+3^4+3^6\right)\)

\(=3\times820+...+3^{1985}\times820\)

\(=3\times20\times41+...+3^{1985}\times20\times41\)

\(=41\times\left(3\times20+...+3^{1985}\times20\right)\)

Vì \(A=41\times\left(3\times20+...+3^{1985}\times20\right)\)nên A chia hết cho 41.


Các câu hỏi tương tự
 Ƹ̴Ӂ̴Ʒ εїзBest Friend Ƹ̴...
Xem chi tiết
Hoàng Phương Ly
Xem chi tiết
Phan Lâm Thanh Trúc
Xem chi tiết
Hoàng Bảo Linh
Xem chi tiết
Xem chi tiết
nguyễn hoàng phương anh
Xem chi tiết
Nguyễn Vũ Quỳnh Chi
Xem chi tiết
Võ Phạm Uyên Nhi
Xem chi tiết
Nguyễn Duẩn
Xem chi tiết