C1
B = (a + b - c)-(b + c - a)-(a - b - c)
=a+b-c-b-c+a-a+b+c
=a+b-c
C2
ta có:
a) (a-b)+(c-d)
=a-b+c-d
=a+c-b-d
=(a+c)-(b+d)
vậy .....
b)ta có:
(a-b)-(c-d)
=a-b-c+d
=a+d-b-c
=a+d-b-c
=(a+d)-(b+c)
C1
B = (a + b - c)-(b + c - a)-(a - b - c)
=a+b-c-b-c+a-a+b+c
=a+b-c
C2
ta có:
a) (a-b)+(c-d)
=a-b+c-d
=a+c-b-d
=(a+c)-(b+d)
vậy .....
b)ta có:
(a-b)-(c-d)
=a-b-c+d
=a+d-b-c
=a+d-b-c
=(a+d)-(b+c)
Cho a/b<c/d va b>0,d>0
Chứng Minh Rằng:a/b<a+c/b+d<c/d
CHỨNG MINH ĐẲNG THỨC
A) a.(b+c) - a.(b+d)= a.(c-d)
B) a.(b-c) + a.(d-c)= a.(b+d)
C) a.(b-c) - a.(b+d)= -a.(c+d)
D) (a+b).(c+d)-(a+b).(b+c)= (a-c).(d-b)
Chứng minh:
a) (a-b)+(c-d)=(a+c)-(b+d)
b) a(b+c)-b(a-c)=c(a+b)
c) (a+b)(c+d)-(a+d)(b+c)=(a-c)(d-b)
Cho a;b;c;d thuộc Z. Chứng minh đẳng thức sau
1) a( b+c) - b(a-c) = ( a+b) c
2)a (b - c)- a (b+d)= - a (c+d)
3) ( a+b)(c+d) - (a + d)(b+c) = (a-c( d - b)
Chứng minh rằng :
a/(a-b)+(c-d)=(a+c)-(b+d)
b/ (a-b)-(c-d)=(a+d)-(b+c)
c/a-(b-c)=(a-b)+c=(a+c)-b
d/(a-b)-(b+c)+(c-a)-(a-b-c)=-(a+b-c)
e/-(-a+b+c)+(b+c-1)=(b-c+6)-(7-a+b)+c
Chứng minh đẳng thức :
a) (a - b + c) - (a + c) = -b
b) (a + b) - (b - a) + c = 2a + c
c) -( a + b - c) + (a- b- c) = -2b
d) a( b+c) - a (b +d) =a( c-d )
e) a (b - c) + a( d+ c) = a( b+d)
Chung minh rag
(a-b+c)-(a+c)=-b
(a+b)-(b-a)+c=2a+c
-(a+b-c)+(a-b-c)=-2b
a (b+c)-a (b+d)=a (c-d)
a (b-c)+a (d+c)=a (b+d)
1 chứng minh đẳng thức
a (a-b+c)-(a+c0=-b
b (a+b) - (b-a)+c = 2a+c
c -(a+b-c) + (a-b-c)=-2b
d a(b+c)-a(b+d)=a(c-d
e a(b-c) +a(d+c)=a(b+d)
g a(b-c)-a(b+d)=-a(c+d)