C = \(\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{30}\)
\(\frac{1}{2}\).C = \(\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{31}\)
\(-\frac{1}{2}C=\frac{1}{2}C-C=\left(\frac{1}{2}\right)^{31}-\frac{1}{2}\)
=> C = \(\left[\left(\frac{1}{2}\right)^{31}-\frac{1}{2}\right]:\left(-\frac{1}{2}\right)\)