tính tổng B=1.2.3+2.3.4+3.4.5+......+n(n+1)(n+2)
Tính tổng
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\)
Tính:
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\))
Tính:
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2017.2018.2019}\)
Giải chi tiết giúp mình nhé
Tính
D=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+......+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
TÍNH TỔNG:
\(S=\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{2.3}-\frac{1}{2.3.4}+\frac{1}{3.4}-\frac{1}{3.4.5}+...+\frac{1}{99.100}-\frac{1}{99.100.101}\)
rút gọn biểu thức:
a)1/(2.5)+1/(5.8)+1/(8.11)+...+1/[(3n+2)(3n+5)]
b)1/(1.2.3)+1/(2.3.4)+1/(3.4.5)+...+1/[(n-1)n(n+1)]
Thanksnha.
Bài 3: Cho S = 1.2.3 + 2.3.4 + 3.4.5 + . . . + k(k+1)(k+2)
Chứng minh rằng 4S + 1 là số chính phương .
Tìm x biết
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2013.2014.2015}\right)x=\left(1.2+2.3+3.4+.....+2014.2015\right)\)