Chọn A.
Ta có:
+ sin4x + cos4x = (sin2x + cos2x)2 - 2sin2x.cos2x = 1 - 2sin2x.cos2x.
+ sin4x + cos4x = 1 - 3sin2x.cos2x.
Do đó
A = 3(1 - 2sin2x.cos2x) - 2(1 - 3sin2x.cos2x) = 1.
Chọn A.
Ta có:
+ sin4x + cos4x = (sin2x + cos2x)2 - 2sin2x.cos2x = 1 - 2sin2x.cos2x.
+ sin4x + cos4x = 1 - 3sin2x.cos2x.
Do đó
A = 3(1 - 2sin2x.cos2x) - 2(1 - 3sin2x.cos2x) = 1.
Rút gọn P=cos6x-cos4x-sinx/sin6x+sin4x+cosx
Giá trị của biểu thức A = sin 6 x + cos 6 x + 3 sin 2 c o s 2 là :
A. A = -1
B. A = 1
C. A = 4
D. A = -4
Rút gọn biểu thức C = 2( sin4x + cos4x + sin2x.cos2x) 2 - ( sin8x + cos8x) có giá trị không đổi và bằng
A. 2
B. 4
C. 1
D. 0
Tính giá trị của biểu thức A = sin6x + cos6x + 3sin2x.cos2x.
A. -1
B. 1
C. 3
D. - 2
Tính giá trị của biểu thức A = sin6x + cos6x + 3sin2xcos2x.
A. A = 1
B. A = 2
C. A = 3
D. A = 4
Giá trị của biểu thức A = sin4x + cos4x - ¼cos 4x là:
A. 2
B. 1
C. 0,75
D. 0,25
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào x.
A = 2( sin 4 x + cos 4 x + sin 2 x . cos 2 x ) 2 - ( sin 8 x + cos 8 x )
Chứng minh các đẳng thức sau (giả sử các biểu thức sau đều có nghĩa)
a) sin4x + cos4x = 1 – 2sin2cos2x
b)
c)
Chứng minh các đẳng thức sau (giả sử các biểu thức sau đều có nghĩa)
a) sin4x + cos4x = 1 – 2sin2cos2x
b)
c)