\(10+\sqrt{60}-\sqrt{24}-\sqrt{40}\)
\(=10+2\sqrt{15}-2\sqrt{6}-2\sqrt{10}\)
\(=10+2\sqrt{3}.\sqrt{5}-2\sqrt{2}.\sqrt{3}-2\sqrt{2}.\sqrt{5}\)
\(=3+5+2+...\)
\(=\left(\sqrt{3}+\sqrt{5}-\sqrt{2}\right)^2\)
\(\Rightarrow P=-\sqrt{2}+\sqrt{3}+\sqrt{5}\)
\(10+\sqrt{60}-\sqrt{24}-\sqrt{40}\)
\(=10+2\sqrt{15}-2\sqrt{6}-2\sqrt{10}\)
\(=10+2\sqrt{3}.\sqrt{5}-2\sqrt{2}.\sqrt{3}-2\sqrt{2}.\sqrt{5}\)
\(=3+5+2+...\)
\(=\left(\sqrt{3}+\sqrt{5}-\sqrt{2}\right)^2\)
\(\Rightarrow P=-\sqrt{2}+\sqrt{3}+\sqrt{5}\)
Biểu diễn A = \(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\) dưới dạng tổng của 3 căn thức
\(\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\) được biểu diễn dưới dạng tổng 3 căn thức bậc 2 như sau: P=\(\sqrt{a}+\sqrt{b}+\sqrt{c}\). khi đó a+b+c=.......
rút gọn biểu thức
\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)
Rút gọn các biểu thức sau:
a.\(2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
b.\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
c.\(\sqrt{8+\sqrt{40}+\sqrt{20}+\sqrt{8}}\)
d.\(\sqrt{10+\sqrt{24}+\sqrt{20}+\sqrt{8}}\)
d.\(\sqrt{10+\sqrt{24}-\sqrt{40}-\sqrt{60}}\)
\(\sqrt{2\sqrt{6}+\sqrt{40}+\sqrt{60}+10}-\sqrt{2\sqrt{6}-\sqrt{40}-\sqrt{60}+10}\)
TÍNH GIÁ TRỊ BIỂU THỨC. LÀM ƠN GIÚP GIÙM TUI NHA
Chứng minh các hằng đẳng thức sau:
a) \(y\sqrt{10+\sqrt{60}-\sqrt{24}-\sqrt{40}}=\sqrt{3}+\sqrt{5}-\sqrt{2}\)
b) \(\sqrt{6+\sqrt{24+\sqrt{12}+\sqrt{8}}}-\sqrt{3}=\sqrt{2}+1\)
Chứng minh các hằng đẳng thức:
a) \(\sqrt{10+\sqrt{60}-\sqrt{24}-\sqrt{40}}=\sqrt{3}+\sqrt{5}-\sqrt{2}\)
b) \(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{3}=\sqrt{2}+1\)
cho biểu thức A= \(\sqrt{x^2-6x+19}-\sqrt{x^2-6x+10}=3\)
hãy tính giá trị của biểu thức
A=\(\sqrt{x^2-6x+19}+\sqrt{x^2-6x+10}\)
VẬN DỤNG BÀI BIẾN ĐỔI ĐƠN GIẢN BIỂU THỨC CHỨA CĂN BẬC HAI
CMR:\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}=\sqrt{2}+\sqrt{3}+\sqrt{5}\)