-Từ số 4! đến số 10! đều chia hết cho 20 do có thừa số 4.5=20.
-Mà 1!+2!+3!=1+2+6=91!+2!+3!=1+2+6=9 chia 20 dư 9 nên tổng đó chia 20 dư 9.
-Từ số 4! đến số 10! đều chia hết cho 20 do có thừa số 4.5=20.
-Mà 1!+2!+3!=1+2+6=91!+2!+3!=1+2+6=9 chia 20 dư 9 nên tổng đó chia 20 dư 9.
*Đề hsg lớp 8
n! = n x (n - 1) x (n - 2) x...x 3 x 2 x 1. Ví dụ, 4! = 4 x 3 x 2 x 1. Tìm số dư trong phép chia tổng 1! + 2! + 3! + ... + 10! cho 20.
1/ CM:
a. (x-1).(x2+x+1)=x3-1
b. (x3+x2y+xy2+y3).(x-y)=x4-y4
2/ Cho a và b là 2 STN. Biết a chia hết cho 3 dư 1; b chia hết cho 3 dư 2. CM rằng ab chia cho 3 dư 2.
3/ CM rằng biểu thức n(2n-3) - 2n(n+1) luôn chia hết cô 5 với mọi số nguyên n.
4/ CM rằng biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3 với mọi giá trị của n.
1,Cho đa thức bậc 4 f(x) biết f(1)=f(2)=f(3)=0, f(4)=6 và f(5)=72. Tìm dư f(2010) khi chia cho 10
2,Cho đa thức bậc 4 f(x) có hệ số bậc cao nhất bằng 1 và f(1)=10,f(2)=20 và f(3)=30. Tính f(10)+f(-6)
3,Tìm đa thức f(x) biết rằng f(x) chia cho x-3 thì dư 2, f(x) chia cho x+4 thì dư 9 còn f(x) chia cho x^2+x-12 thì được thương là x^2+3 và còn dư.
1) Cho P= 1+x+x^2+....+x^10. Chứng minh rằng: xP-P = x^11-1?
2) Chứng minh rằng hiệu các bình phương của hai số nguyên liên tiếp là một số lẻ?
3) Chứng minh rằng hiệu các bình phương của hai số chẵn liên tiếp luôn chia hết cho 4?
4) Biết số tự nhiên n chia cho 8 dư 5. Khi đó n^2 chia cho 8 có dư bằng...?
5) Tìm giá trị x thỏa mãn: 4x(5x-1)+10(2-2x)=16?
6) Phân tích đa thức thành nhân tử: x^3+2x^2-11x-12?
1.Tìm n thuộc Z để n^3-n^2+2n+7 chia hết cho n^2 +1
2.Tìm a,b để ax^4-5x^3+bx+2 chia hết cho x^2-x-2
3.Tìm dư của x^100+x^52-x^8+5x-2 chia cho x^2-x+1
1) tìm số dư của các phép chia sâu đây :
a) x^4 -2 chia cho x^2+1
b)x^4+x^3+x^2+x chia cho x^2-1
c) x^99+x^55+x^11+x+7 cho x^2+1
2) tìm a để đa thức : x^2-3x+a chia hết cho x+2
4. tìm a và b để x^4+x^3+ax^2+4x+b chi hết cho x^2-2x+2
5. tìm số dư trong phép chia (x+2)(x+3)(x+4)(x+5)+2018 cho x^2 + 7x+3
Trong toán học, n! (đọc là n giai thừa) được định nghĩa như sau:
n! = 1 x 2 x 3 x ... x (n-1) x n
Ví dụ: 1! = 1
2! = 1 x 2 = 2
3! = 1 x 2 x 3 = 6
Hãy cho biết 8 chữ số cuối cùng của số thập phân biểu diễn số 37!
Trong toán học, n! (đọc là n giai thừa) được định nghĩa như sau:
n! = 1 x 2 x 3 x ... x (n-1) x n
Ví dụ: 1! = 1
2! = 1 x 2 = 2
3! = 1 x 2 x 3 = 6
Hãy cho biết 8 chữ số cuối cùng của số thập phân biểu diễn số 37!
-----------------
Trong toán học, n! (đọc là n giai thừa) được định nghĩa như sau:
n! = 1 x 2 x 3 x ... x (n-1) x n
Ví dụ: 1! = 1
2! = 1 x 2 = 2
3! = 1 x 2 x 3 = 6
Hãy cho biết 8 chữ số cuối cùng của số thập phân biểu diễn số 37!