Biết hàm số F(x) là một nguyên hàm của hàm số f ( x ) = ln x x ln 2 x + 3 có đồ thị đi qua điểm (e; 2016) . Khi đó hàm số F(1) là
A. 3 + 2014
B. 3 + 2016
C. 2 3 + 2014
D. 2 3 + 2016
Cho hàm số f(x) có đạo hàm trên R và thỏa mãn f(2016) = a, f(2017) = b, a ; b ∈ ℝ . Giá trị I = ∫ 2017 2016 2015 f ' x . f 2014 x d x bằng:
A. I = b 2017 - a 2017
B. I = a 2016 - b 2016
C. I = a 2015 - b 2015
D. I = b 2015 - a 2015
Cho biểu thức f ( x ) = 1 2018 x + 2018 . Tính tổng
S = 2018 [ f ( - 2017 ) + f ( - 2016 ) + . . . + f ( 0 ) + f ( 1 ) + . . . + f ( 2018 ) ]
Cho các hàm số f ( x ) = x 2 - 4 x + 2016 và g ( x ) = 1 4 x 4 + 1 3 x 3 - 1 2 x 2 - x + 2016 . Hàm số nào có ba cực trị
A. Không có hàm số nào.
B. Hàm số f(x).
C. Hàm số f(x) và g(x)
D. Hàm số g(x).
Biết F ( x ) = ( a x 2 + b x + c ) e - x là một nguyên hàm của hàm số f ( x ) = ( 2 x 2 - 5 x + 2 ) e - x trên ℝ . Giá trị của biểu thức f(F(0)) bằng:
Biết F ( x ) = ( a x 2 + b x + c ) e - x là một nguyên hàm của hàm số f ( x ) = ( 2 x 2 - 5 x + 2 ) e - x trên ℝ . Giá trị của biểu thức f(F(0)) bằng
A. 9e
B. - 1 e
C. 3e
D. 20 e 2
Biết F ( x ) là một nguyên hàm của hàm số f ( x ) = ln 2 x + 1 . ln x x thoả mãn F ( 1 ) = 1 3 . Giá trị của F 2 ( e ) là
A. 8 9
B. 1 9
C. 8 3
D. 1 3
( Mu4-42. Cho hàm so $f(x)$ có đạo hàm trên đoạn $[0 ; 1]$ thỏa mãn $f(1)=0$ và $\int_0^1\left[f^{\prime}(x)\right]^2 d x=\int_0^1(x+1) e^x f(x) d x=\frac{e^2-1}{4}$. Tinh tich phân $I=\int_{0}^1 f(x) d x$.
A. $I=2-e$.
B. $I=\frac{e}{2}$.
C. $l=e-2$.
D. $1=\frac{e-1}{2}$
Gọi F(x) là một nguyên hàm của hàm số f(x)= 5 x thỏa mãn f(0)= 1 ln 5 . Tính giá trị biểu thức T=F(0)+F(1)+F(2)+...+F(2017)