Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hồng Minh

Biết ax+by+cz=0. Rút gọn:

A= \(\frac{ax^2+by^2+cz^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)

Châu Phạm
14 tháng 12 2016 lúc 10:06

x^20+(x+1)^11=2016^y=?

Nhóc vậy
26 tháng 12 2017 lúc 10:41

Từ giả thiết ta có: \(ax+by+cz=0\Rightarrow a^2x^2+b^2y^2+c^2z^2=-2\left(axby+bycz+axcz\right)\)

Ta biến đổi mẫu của biểu thức A: 

\(bc\left(y^2-2yz+z^2\right)+ac\left(x^2-2xz+z^2\right)+ab\left(x^2-2xy+y^2\right)\)

\(=bcy^2+bcz^2+acx^2+acz^2+abx^2+aby^2-2\left(bycz+axcz+axby\right)\)

\(=bcy^2+bcz^2+acx^2+acz^2+abx^2+aby^2+a^2x^2+b^2y^2+c^2z^2\)

\(=\left(bcz^2+abx^2+b^2y^2\right)+\left(bcy^2+acx^2+c^2z^2\right)+\left(acz^2+aby^2+a^2x^2\right)\)

\(=b\left(cz^2+ax^2+by^2\right)+c\left(by^2+ax^2+cz^2\right)+a\left(cz^2+by^2+ax^2\right)\)

\(=\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)\)

Vậy  \(A=\frac{ax^2+by^2+cz^2}{\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)}=\frac{1}{a+b+c}\)


Các câu hỏi tương tự
đanh khoa
Xem chi tiết
nguyễn thị vân anh
Xem chi tiết
Bùi Minh Quân
Xem chi tiết
Thanh Tâm
Xem chi tiết
Pham Van Hung
Xem chi tiết
Thanh Xuân
Xem chi tiết
Thượng Thần Bạch Thiển
Xem chi tiết
Ngô Ngọc Khánh
Xem chi tiết
shitbo
Xem chi tiết