Chọn B
∫ 1 2 d x 4 x 2 - 4 x + 1 = ∫ 1 2 d x ( 2 x - 1 ) 2 = - 1 2 . 1 2 x - 1 2 1 = - 1 2 . 1 3 - 1 = 1 2 - 1 6
⇒ a = 2 b = 6 ⇒ a , b là nghiệm của phương trình x 2 - 8 x + 12 = 0
Chọn B
∫ 1 2 d x 4 x 2 - 4 x + 1 = ∫ 1 2 d x ( 2 x - 1 ) 2 = - 1 2 . 1 2 x - 1 2 1 = - 1 2 . 1 3 - 1 = 1 2 - 1 6
⇒ a = 2 b = 6 ⇒ a , b là nghiệm của phương trình x 2 - 8 x + 12 = 0
Phương trình nào sau đây có nghiệm duy nhất trên R?
A. (x - 5)( x 2 - x - 12) = 0 B. - x 3 + x 2 - 3x + 2 = 0
C. sin 2 x - 5sinx + 4 = 0 D. sinx - cosx + 1 = 0
Phương trình nào sau đây có nghiệm duy nhất trên R?
A. (x - 5)( x 2 - x - 12) = 0 B. - x 3 + x 2 - 3x + 2 = 0
C. sin 2 x - 5sinx + 4 = 0 D. sinx - cosx + 1 = 0
Nghiệm của bất phương trình log 2 3 x - 2 < 0 là:
A. x > 1 B. x < 1
C. 0 < x < 1 D. log 3 2 < x < 1
Nghiệm của bất phương trình log 2 ( 3 x - 2 ) < 0 là:
A. x > 1 B. x < 1
C. 0 < x < 1 D. log 3 2 < x < 1
Nghiệm của phương trình log 4 2 log 3 1 + log 2 1 + 3 log 2 x = 1/2 là
A. x = 1 B. x = 2
C. x = 3 D. x = 0
Nghiệm của phương trình log 4 { 2 log 3 [ 1 + log 2 ( 1 + 3 log 2 x ) ] } = 1/2 là
A. x = 1 B. x = 2
C. x = 3 D. x = 0
Giải các bất phương trình sau:
a) (2x − 7)ln(x + 1) > 0;
b) (x − 5)(logx + 1) < 0;
c) 2 log 3 2 x + 5 log 2 2 x + log 2 x – 2 ≥ 0
d) ln(3 e x − 2) ≤ 2x
Tiệm cận đứng và ngang của đồ thị hàm số sau là:
A. x = 2, y = 0 B. x = 0, y = 2
C. x = 1, x = 1 D. x = -2; y = -3
Tiệm cận đứng và ngang của đồ thị hàm số sau là:
y = - 3 x - 2
A. x = 2, y = 0 B. x = 0, y = 2
C. x = 1, x = 1 D. x = -2; y = -3
( Mu4-42. Cho hàm so $f(x)$ có đạo hàm trên đoạn $[0 ; 1]$ thỏa mãn $f(1)=0$ và $\int_0^1\left[f^{\prime}(x)\right]^2 d x=\int_0^1(x+1) e^x f(x) d x=\frac{e^2-1}{4}$. Tinh tich phân $I=\int_{0}^1 f(x) d x$.
A. $I=2-e$.
B. $I=\frac{e}{2}$.
C. $l=e-2$.
D. $1=\frac{e-1}{2}$