Đặt \(A=\sqrt{2+\sqrt{3}}\)
\(\Rightarrow A\sqrt{2}=\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{3+2\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}+1\)
\(\Rightarrow A=\frac{\sqrt{3}+1}{2}hay\sqrt{2+\sqrt{3}}=\frac{\sqrt{3}+1}{2}\)
TK nha!
\(\sqrt{2+\sqrt{3}}=\sqrt{\frac{4+2\sqrt{3}}{2}}\)
\(=\sqrt{\frac{\left(\sqrt{3}+1\right)^2}{2}}\)
\(=\frac{\sqrt{3}+1}{\sqrt{2}}\)
\(=\frac{\sqrt{6}+\sqrt{2}}{2}\)