\(B=\frac{\left(3^2.5^2.7^2\right).\left(3^3.7^2\right)}{3.5.7^2}=\frac{3^5.5^2.7^4}{3.5.7^2}=\frac{3^4.5.7^2}{1}=19845\)
\(B=\frac{3^2\times5^2\times7^2\times3^3\times7^2}{3\times5\times7^2}=\frac{3^5\times5^2\times7^4}{3\times5\times7^2}=3^4\times5\times7^2=19845\)
\(\Rightarrow B=\frac{\left(3\cdot5\cdot7^2\right)\left(3^4\cdot5\cdot7^2\right)}{\left(3\cdot5\cdot7^2\right)}=3^4\cdot5\cdot7^2=81\cdot5\cdot49=19845\)
Ta có: \(\frac{\left(3^2.5^2.7^2\right).\left(3^3.7^2\right)}{3.5.7^2}\)= \(\frac{3^2.5^2.7^2.3^3.7^2}{3.5.7^2}\)= \(3.5.3^3.7^2\)=3.5.27.49=19845