a) Đặt A= 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
2A= 2(1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256)
= 1+1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
=>A = 2A-A =1+1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 -1/2 - 1/4 - 1/8 - 1/16 - 1/32 - 1/64 - 1/128 - 1/256
=1-1/256
=255/256
\(B+\frac{1}{128}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{128}.\)
\(B+\frac{1}{128}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{64}\)
\(B+\frac{1}{128}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{32}\)
...
\(B+\frac{1}{128}=1\)
Vậy, \(B=1-\frac{1}{128}=\frac{127}{128}\)
Ta co:
1/2=1-/2
1/4=1/2-1/4
1/8=1/4-1/8.....
Vậy tổng trên=1/2-1/4+1/4-1/8+1/8-1/16+1/16-1/32+1/32-1/64+1/64-1/128
=1/2-1/128
=63/128