\(B=\frac{1}{19}+\frac{9}{19.29}+\frac{9}{29.39}+...+\frac{9}{1999.2009}\)
\(=\frac{9}{9.19}+\frac{9}{19.29}+\frac{9}{29.39}+...+\frac{9}{1999.2009}\)
\(=\frac{9}{10}\left(\frac{1}{9}-\frac{1}{19}+\frac{1}{19}-\frac{1}{29}+\frac{1}{29}-\frac{1}{39}+...+\frac{1}{1999}-\frac{1}{2009}\right)\)
\(=\frac{9}{10}\left(\frac{1}{9}-\frac{1}{2009}\right)\)
\(=\frac{200}{2009}\)
Gọi \(B=\frac{9}{19}+A\)
\(A=\frac{9}{19\cdot29}+\frac{9}{29\cdot39}+...+\frac{9}{1999\cdot2009}\)
\(\frac{A}{9}=\frac{1}{19\cdot29}+\frac{1}{29\cdot39}+...+\frac{1}{1999\cdot2009}\)
\(\frac{A\cdot10}{9}=\frac{10}{19+29}+\frac{10}{29\cdot39}+...+\frac{10}{1999\cdot2009}\)
\(\frac{A\cdot10}{9}=\frac{1}{19}-\frac{1}{29}+\frac{1}{29}-\frac{1}{39}+...+\frac{1}{1999}-\frac{1}{2009}\)
\(\frac{A\cdot10}{9}=\frac{1}{19}-\frac{1}{2009}\)
\(A=\frac{1791}{38171}\)
\(\Rightarrow B=\frac{1}{19}+\frac{1791}{38171}\)
\(\Rightarrow B=\frac{200}{2009}\)