=> \(B=\frac{1}{1-\frac{1}{1-2^{-1}}}+\frac{1}{1+\frac{1}{1+2^{-1}}}=-1+\frac{3}{5}=-\frac{2}{5}\)
=> \(B=\frac{1}{1-\frac{1}{1-2^{-1}}}+\frac{1}{1+\frac{1}{1+2^{-1}}}=-1+\frac{3}{5}=-\frac{2}{5}\)
Bài 1:
a) Cho \(b\in n\):\(b>1\). Chứng minh rằng: \(\frac{1}{b}-\frac{1}{b+1}< \frac{1}{b^2}-\frac{1}{b-1}-\frac{1}{b}\)(1)
b) Áp dụng công thức (1) chứng minh \(\frac{2}{5}< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{8^2}+\frac{1}{9^2}< \frac{8}{9}\)
Bài 2. Chứng tỏ
\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{21.25}< \frac{1}{4}\)
Tính:
a) \(A=\frac{(1+17)(1+\frac{17}{2})(1+\frac{17}{3})...(1+\frac{17}{19})}{(1+19)(1+\frac{19}{2})(1+\frac{19}{3})...(1+\frac{19}{17})}\)
b) \(B=\frac{1}{-2}.\frac{1}{3}+\frac{1}{-3}.\frac{1}{4}+...+\frac{1}{-5}.\frac{1}{10}\)
c) \(C=(1-\frac{1}{1.2})+(1-\frac{1}{2.3})+...+(1-\frac{1}{2015.2016})\)
d) \(D=\frac{\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{3}+...+\frac{1}{10}}\)
Cho A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
B = \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
a) So sánh A và B
b) Chứng minh A = \(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\)
\(A=\frac{1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+......+\frac{1}{999}}{\frac{1}{1.999}+\frac{1}{3.997}+\frac{1}{5.995}+......+\frac{1}{999.1}}\)
\(B=\frac{1+\left(1+2\right)+\left(1+2+3\right)+\left(1+2+3+4\right)+......+\left(1+2+3+...+98\right)}{1.2+2.3+3.4+4.5+......+98.99}\)
\(C=\frac{\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.302}+......+\frac{1}{100.400}}{\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+......+\frac{1}{299.400}}\)
\(D=\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+......+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{100}}:\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{97}-......-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+......+\frac{1}{500}}\)
Tính:
a, A=\(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)
b, B=\(\left(\frac{1}{2}-\frac{1}{3}\right).\left(\frac{1}{2}-\frac{1}{5}\right).\left(\frac{1}{2}-\frac{1}{7}\right)....\left(\frac{1}{2}-\frac{1}{99}\right)\)
1. so sánh
A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+với1\)
B=\(1-\left(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+\frac{1}{41}+\frac{1}{61}+\frac{1}{85}+\frac{1}{113}\right)với\frac{1}{2}\)
C=\(1-\left(\frac{1}{5}+\frac{1}{11}+\frac{1}{10}+\frac{1}{9}+\frac{1}{59}+\frac{1}{58}+\frac{1}{57}\right)với\frac{1}{2}\)
Chứng minh \(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{2}\)\(\frac{1}{2}\)
b,\(\frac{1}{^{2^2}}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
c,\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}>48\)
d,\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
Chứng tỏ rằng:
a/ \(\frac{1}{2}< \frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}< 1\)
b/ \(1< \frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< 2\)
c/ A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}< 1\)
d/ \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}< \frac{1}{2}\)
e/ \(\frac{2}{5}< \frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}< \frac{2}{3}\)
f/\(C=\frac{3}{1^2\cdot2^2}+\frac{5}{2^2\cdot3^2}+\frac{7}{3^2\cdot4^2}+...+\frac{19}{9^2\cdot10^2}< 1\)
a) \(A=\left(\frac{1}{2}-\frac{1}{3}\right)\left(\frac{1}{2}-\frac{1}{5}\right)\left(\frac{1}{2}-\frac{1}{7}\right)...\left(\frac{1}{2}-\frac{1}{99}\right)\)
b) \(B=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)
Giúp mình nhanh nhé, 3 tick đấy!
Chứng minh rằng:
a/\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
b/\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1\frac{3}{4}\)
c/\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\)