Cho 65 điểm, không có 3 điểm nào thẳng hàng nằm bên trong một hình vuông có cạnh bằng 1. Chứng minh rằng, luôn tìm được 5 điểm trong 65 điểm đó thỏa mãn: các tam giác được tạo bởi 3 điểm bất kì trong 5 điểm đó có diện tích không quá \(\frac{1}{32}\).
Chứng minh rằng :diện tích tam giác có ba đỉnh nằm trên ba cạnh của hình vuông bao giờ cũng bé hơn một nửa diện tích hình vuông đó {đỉnh tam giác không trùng với đỉnh hình vuông
Ở miền trong 1 đa giác lồi 2018 cạnh có diện tích bằng 1 lấy 2017 điểm trong đó ko có 3 điểm nào thẳng hàng CMR: luôn tồn tại 1 tam giác có đỉnh lấy từ 3035 điểm trên (gồm 2018 đinh của đa gicas và 2017 điểm đã cho) có diện tích không vượt quá 1/6050
Ở trong 1 miền đa giác lồi có 2018 cạnh có diện tích bằng 1 lấy 2017 điểm trong đó ko có 3 điểm nào thẳng hàng CMR: luôn tồn tại một tam giác có đỉnh lấy từ 4035 điểm trên (2018 đinh của đa giác và 2017 điểm đã cho) có diện tích ko quá 1/6050
Trong hình vuông có cạnh bằng 32 cho 33 điểm bất kỳ. Chứng minh rằng trong các điểm đã cho có thể tìm được 3 điểm lập thành tam giác có diện tích không lớn hơn 32
1) Cho tam giác đều ABC,gọi M là trung điểm của BC.Một góc xMy = 60 độ quay quanh điểm M sao cho 2 cạnh Mx,My luôn cắt cạnh AB và AC lần lượt tại D và E.Chứng minh :
a) BD*Ce=BC2/4
b)ĐM,EM lần lượt là tia phân giác của các góc BDE và CED.
c)Chu vi tam giác ADE không đổi.
2)tìm tất cả các tam giác vuông có số đo các cạnh là các số nguyên dương và số đo diện tích bằng số đo chu vi.
3)Cho tam giác ABC vuông tại A(AB<AC),có AH là đường cao. Trong nửa mặt phẳng bờ AH có chứa C vẽ hình vuông AHKE.
a)Chứng minh:C<45 độ
b)Gọi P là giao điểm của AC và KE.chứng minh AB=AP
c)Gọi Q là đỉnh thứ tư của hình bình hành APQB, gọi I là giao điểm của BP và AQ. Chứng minh ba điểm H,I,E thẳng hàng.
d)Chung minh : HE//QK
4)Cho tam giác DBC nhọn . Kẻ BM vuông CD(M thuộc CD),CA vuông BD (A thuộc BD).gọi I là trung điểm của AB ,qua I kẻ đường thẳng vuông góc với AB và cắt CB tại O;qua M kẻ đường thẳng vuông góc với MO cắt DA tại K . Chứng minh KA*KB=KM2
Cho tam giác ABC đều và điểm m thuộc miền trong của tam giác. Chứng minh rằng tồn tại một tam giác có 3 đỉnh thuộc 3 cạnh của tam giác ABC và ba cạnh có độ dài bằng MA, MB ,MC
Cho tam giác ABC đều và điểm m thuộc miền trong của tam giác. Chứng minh rằng tồn tại một tam giác có 3 đỉnh thuộc 3 cạnh của tam giác ABC và ba cạnh có độ dài bằng MA, MB ,MC
Chứng minh rằng tam giác có một đỉnh là giao điểm hai cạnh đối của một tứ giác, hai đỉnh kia là trung điểm hai đường chéo của tứ giác đó có diện tích bằng 1/4 diện tích tứ giác