Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mon Trang

bài9: chứng tỏ các đa thức sau ko có nghiệm 
b) x^2 - 5x + 31
c-x^2 - 12x - 45
d) x^2 - 4x + 26
bài4:tìm nghiệm của đa thức sau
d) x^3 - 19x^2

Nguyễn Việt Lâm
11 tháng 1 2024 lúc 17:10

b.

Đặt \(f\left(x\right)=x^2-5x+51=x^2-5x+\dfrac{25}{4}+\dfrac{37}{2}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{2}\)

Do \(\left(x-\dfrac{5}{2}\right)^2\ge0;\forall x\Rightarrow\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{2}\ge\dfrac{37}{2}\) ;\(\forall x\)

\(\Rightarrow\) Đa thức \(f\left(x\right)\) không có nghiệm

c.

Đặt \(g\left(x\right)=-x^2-6x-45=-\left(x^2+6x+9\right)-36=-\left(x+3\right)^2-36\)

Do \(-\left(x+3\right)^2\le0;\forall x\Rightarrow-\left(x+3\right)^2-36\le-36\) ;\(\forall x\)

\(\Rightarrow\) Đa thức \(g\left(x\right)\) không có nghiệm

d.

Đặt \(h\left(x\right)=x^2-4x+26=\left(x^2-4x+4\right)+22=\left(x-2\right)^2+22\)

Do \(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2+22\ge22\) ;\(\forall x\)

\(\Rightarrow\) Đa thức \(h\left(x\right)\) không có nghiệm

4.

d. \(x^3-19x^2=0\)

\(\Leftrightarrow x^2\left(x-19\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x-19=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=19\end{matrix}\right.\)

Vậy đa thức có 2 nghiệm là \(x=0;x=19\)


Các câu hỏi tương tự
༺ミ𝒮σɱєσиє...彡༻
Xem chi tiết
Võ Đông Anh Tuấn
Xem chi tiết
nguyễn trà my
Xem chi tiết
lê anh vũ
Xem chi tiết
Bui Cam Lan Bui
Xem chi tiết
thanh tam tran
Xem chi tiết
༺ミ𝒮σɱєσиє...彡༻
Xem chi tiết
Lê Thúy Vy
Xem chi tiết
Phạm Nguyễn Hoàng Lâm
Xem chi tiết