Bài1: Cho 2015 số nguyên dương phân biệt không vượt quá 2019. Chứng minh trong 2015 số đó tồn tại 4 số a,b,c,d sao cho a+b+c=d
Cho 2015 số nguyên dương biết không có số nào lớn hơn 2019.Chứng minh rằng trong 2015 số đó có 4 số a,b,c,d thoả mãn a+b+c=d
Câu hỏi nhóm BGS số 3 - lớp 8:
Cho 4 số nguyên dương a,b,c,d trong đó tổng ba số bất kì chia cho số còn lại đều có thương là một số nguyên khác 1. Chứng minh rằng trong bốn số a, b, c, d tồn tại hai số bằng nhau.
Với mỗi số thực a, ta gọi phần nguyên không vượt quá a là số nguyên lớn nhất không vượt quá a và ký hiệu là [a]. Chứng minh rằng với mọi n nguyên dương ta luôn có
\(\left[\frac{3}{1.2}+\frac{7}{2.3}+...+\frac{n^2+n+1}{n\left(n+1\right)}\right]=n\)
Bên hình vuông cạnh bằng 10 cm2 có 100 điểm không có 3 điểm nào thảng hàng. Chứng minh rằng trong số các tam giác có đỉnh là các điểm đó hoặc các đỉnh hình vuông , tồn tại 1 tam giác có diện tích không quá \(\frac{50}{1001}cm^2\)
a) chứng minh rằng số có dạng n6 - n4 + 2n3 + 2n2 trong đó n > 1 và là số tự nhiên không phải là số chính phương.
b) giả sử N = 1.3.5.7...2009.2011
Chứng minh rằng trong 3 số nguyên liên tiếp 2N - 1, 2N, 2N + 1 không số nào là số chính phương.
Tồn tại hay không số tự nhiên \(n\) để \(n^2+n+1\) chia hết cho 2015
Cho 2 số tự nhiên a và b, trong đó số a gồm 52 số 1 và số b gồm 104 số 1... Hỏi tích a*b có chia hết cho 3 không??? Vì sao???
Cho a là số gồm 2n chữ số 1, b là số gồm n+1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a+b+c+8 là số chính phương .