\(A=\left(\frac{1}{10}-1\right)\left(\frac{1}{11}-1\right)\left(\frac{1}{12}-1\right)...\left(\frac{1}{99}-1\right)\left(\frac{1}{100}-1\right)\)
\(A=\left(-\frac{9}{10}\right)\cdot\left(-\frac{10}{11}\right)\cdot\left(-\frac{11}{12}\right)\cdot....\cdot\left(-\frac{98}{99}\right)\left(-\frac{99}{100}\right)\)
\(A=\frac{\left(-9\right)\left(-10\right)\left(-11\right)...\left(-98\right)\left(-99\right)}{10\cdot11\cdot12\cdot....\cdot99\cdot100}\)
\(A=\frac{9\cdot10\cdot11\cdot....\cdot98\cdot99}{10\cdot11\cdot12\cdot...\cdot99\cdot100}=\frac{9}{100}\)
Đáp án là \(-\frac{9}{100}\)nhá