Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
zZz Cool Kid_new zZz

Bài hay lụm trên fb mọi người cùng thảo luận:

Với \(m>n\) và m,n là các số nguyên lẻ;\(\frac{n^2-1}{m^2-n^2+1}\) là số nguyên thì \(m^2-n^2+1\) là số chính phương

Tran Le Khanh Linh
8 tháng 8 2020 lúc 23:18

nếu m=n thì ta có đpcm

xét m khác n ta đặt \(\hept{\begin{cases}m+n=2x\\m-n=2y\end{cases}\left(x,y\in Z,x>0;y\ne0\right)}\)khi đó ta có \(\hept{\begin{cases}x+y=m\\x-y=n\end{cases}}\)do đó m,n>0

\(\Rightarrow\hept{\begin{cases}x+y>0\\x-y>0\end{cases}\Rightarrow x>\left|y\right|}\)

do \(n^2-1⋮\left|m^2-n+1\right|\Rightarrow-\left(m^2-n^2-1\right)+m^2⋮\left|m^2-n^2+1\right|\Rightarrow m^2⋮m^2-n^2+1\)

\(\Rightarrow m^2=k\left(m^2-n^2+1\right)\left(1\right)\left(k\inℤ\right)\)

thay m=x+y; n=x-y ta có \(\left(x+y\right)^2=k\left(4xy+1\right)\Leftrightarrow x^2-2\left(2k-1\right)xy+y^2-k=0\)(*)

phương trình (*) có 1 nghiệm của x thuộc Z nên có 1 nghiệm nữa là xtheo hệ thức Vi-et ta có

\(\hept{\begin{cases}x+x_1=2\left(2k-1\right)\\xx_1=y^2-k\end{cases}}\Rightarrow x_1\inℤ\)

nếu x1>0 thì (x1;y) là một cặp nghiệm thỏa mãn (*) 

=> \(x_1>\left|y\right|\Rightarrow y^2-k=xx_1>\left|y\right|^2=y^2\Rightarrow k< 0\Rightarrow x_1+x=2\left(2k-1\right)< 0\)mâu thuẫn

nếu x1<0 thì \(xx_1=y^2-k< 0\Rightarrow k>y^2\Rightarrow k>0\Rightarrow4xy+1>0\Rightarrow y>0\)ta có

\(k=x_1^2-2\left(2k-1\right)x_1y+y^2=x_1^2+2\left(2k-1\right)\left|x_1\right|y\ge2\left(2k-1\right)>k\)mâu thuẫn

vậy x1=0 khi đó k=y2 và \(m^2-n^2+1=\frac{m^2}{k}=\left(\frac{m}{y}\right)^2\)nên m2-n2+1 là số chính phương

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
9 tháng 8 2020 lúc 0:02

Tham khảo lời giải của anh Nguyễn Nhất Huy

Không có mô tả ảnh.

Không có mô tả ảnh.

Không có mô tả ảnh.

Khách vãng lai đã xóa

Các câu hỏi tương tự
Sarala Hitodomi
Xem chi tiết
Phạm Minh Phú
Xem chi tiết
zZz Cool Kid_new zZz
Xem chi tiết
nguyen kim chi
Xem chi tiết
Đỗ Tố Quyên
Xem chi tiết
NY
Xem chi tiết
Hắc Thiên
Xem chi tiết
Hoàng Minh
Xem chi tiết
Ngô Trí Trường
Xem chi tiết