Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thúy Trần

Bài 9: Cho 2 đường thẳng y = ( k + 3)x + m + 1 (d1) và y = 4x + 3 – m (d2). Tìm điều kiện của k và m để hai đường thẳng: a)Song song b)Cắt nhau c)Trùng nhau d)Cắt nhau tại một điểm trên trục tung e)Vuông góc với nhau

Akai Haruma
11 tháng 1 2022 lúc 8:29

Lời giải:

Để hai đường thẳng song song nhau thì:

\(\left\{\begin{matrix} k+3=4\\ m+1\neq 3-m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k=1\\ m\neq 1\end{matrix}\right.\)

Để hai đt cắt nhau thì: \(\left\{\begin{matrix} k+3\neq 4\\ m\in\mathbb{R}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k\neq 1\\ m\in\mathbb{R}\end{matrix}\right.\)

Để hai đt trùng nhau thì: \(\left\{\begin{matrix} k+3=4\\ m+1=3-m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k=1\\ m=1\end{matrix}\right.\)

Để hai đt cắt nhau tại 1 điểm trên trục tung thì:

PT hoành độ giao điểm $(k+3)x+m+1=4x+3-m$ nhận $x=0$ là nghiệm 

$\Leftrightarrow x(k-1)+(2m-2)=0$ nhận $x=0$ là nghiệm 

$\Leftrightarrow 2m-2=0$

$\Leftrightarrow m=1$

Vậy $m=1$ và $k\in\mathbb{R}$ bất kỳ.

Để 2 đt vuông góc thì $(k+3).4=-1$ và $m$ bất kỳ 

$\Leftrightarrow k=\frac{-13}{4}$ và $m$ bất kỳ.