Ta gọi số 5 chữ số là ABCDE (A khác 0)
ABCDE
x 9
EDCBA
A = 1 (vì nếu A>1 thì tích sẽ có 6 chữ số)
=> E = 9
1BCD9
x 9
9DCB1
B = 0 hoặc B = 1 (vì nếu B >1 thì phép nhân ở hàng nghìn 9 x B sẽ nhớ ít nhất 1 sang hàng chục nghìn => E không thể là 9 được)
*) Xét trường hợp B = 0
10CD9
x 9
9DC01
=> 9.D + 8 có tận cùng là 0 => D = 8 (vì 9x8 + 8 = 80, tận cùng là 0)
10C89
x 9
98C01
Số 98C01 phải chia hết cho 9 => 9 + 8 + C + 0 + 1 = 18 + C chia hết cho 9 => C = 9
10989
x 9
98901
Đúng. Vậy ta được 1 đáp số là 10989
*) Xét trường hợp B = 1 (sau khi đã biết A = 1, D = 9)
11CD9
x 9
9DC11
=> 9.D + 8 có tận cùng là 1
=> D = 7 (vì 9.7 + 8 = 71, có tận cùng là 1)
11C79
x 9
97C11
Số 97C11 phải chia hết cho 9 => 9 + 7 + C + 1 + 1 = 18 + C chia hết cho 9 => C = 0 hoặc C = 9
Thử lại với C = 0:
11079
x 9
97011 KHÔNG ĐÚNG
Thử lại với C = 9
11979
x 9
97911 KHÔNG ĐÚNG
Vậy có 1 đáp số duy nhất là:
10989
x 9
98901
Ta gọi số 5 chữ số là ABCDE (A khác 0)
ABCDE
x 9
EDCBA
A = 1 (vì nếu A>1 thì tích sẽ có 6 chữ số)
=> E = 9
1BCD9
x 9
9DCB1
B = 0 hoặc B = 1 (vì nếu B >1 thì phép nhân ở hàng nghìn 9 x B sẽ nhớ ít nhất 1 sang hàng chục nghìn => E không thể là 9 được)
*) Xét trường hợp B = 0
10CD9
x 9
9DC01
=> 9.D + 8 có tận cùng là 0 => D = 8 (vì 9x8 + 8 = 80, tận cùng là 0)
10C89
x 9
98C01
Số 98C01 phải chia hết cho 9 => 9 + 8 + C + 0 + 1 = 18 + C chia hết cho 9 => C = 9
10989
x 9
98901
Đúng. Vậy ta được 1 đáp số là 10989
*) Xét trường hợp B = 1 (sau khi đã biết A = 1, D = 9)
11CD9
x 9
9DC11
=> 9.D + 8 có tận cùng là 1
=> D = 7 (vì 9.7 + 8 = 71, có tận cùng là 1)
11C79
x 9
97C11
Số 97C11 phải chia hết cho 9 => 9 + 7 + C + 1 + 1 = 18 + C chia hết cho 9 => C = 0 hoặc C = 9
Thử lại với C = 0:
11079
x 9
97011 KHÔNG ĐÚNG
Thử lại với C = 9
11979
x 9
97911 KHÔNG ĐÚNG
Vậy có 1 đáp số duy nhất là:
10989
x 9
98901