Bài 7: Cho tam giác ABC, các đường cao BD và CE cắt nhau tại H .Đường vuông góc với AB tại B
và đừơng vuông góc với AC tại C cắt nhau tại K.Gọi M là trung điểm của BC.
Chứng minh rằng :
a) ADB ∼
AEC; AED ∼
ACB.
b) HE.HC = HD. HB
c) H,M,K thẳng hàng
d) Tam giác ABC phải có điều kiện gì thì tứ giác BACK sẽ là hình thoi? Hình chữ nhật?
Bài 8:Cho tam giác ABC cân tại A , trên BC lấy điểm M.Vẽ ME , MF vuông góc với AC,AB,Kẻ
đường cao CA . CMR:
a) Tam giác BFM đồng dạng với tam giác CEM.
b) Tam giác BHC đồng dạng với tam giác CEM.
c) ME + MF không thay đổi khi M di động trên BC.