a: Xét tứ giác ADCM có
N là trung điểm của AC
N là trung điểm của MD
Do đó: ADCM là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên ADCM là hình chữ nhật
a: Xét tứ giác ADCM có
N là trung điểm của AC
N là trung điểm của MD
Do đó: ADCM là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên ADCM là hình chữ nhật
cho tam giác ABC nhọn (AB<AC) đường cao AH. Gọi D là trung điểm của AC, K là điểm đối xứng của H qua D
a, cm tứ giác AHCK là hình chữ nhật
b, Gọi I,E lần lượt là trung điểm của BC và AB cm tứ giác EDCI là hình bình hành
c, tứ giác EBHI là hình thang cân
d, AH cắt DE tại M, BM cắt HE tại N,AN cắt BC tại L. Gọi O là trung điểm của MI , B là điểm đối xứng của L qua N cm C,O,N thẳng hàng
Giúp em với ạ
Bài 2: Cho ABC cân tại A có H là trung điểm BC.
a) Chứng minh AH ⊥ BC tại H.
b) Gọi I là trung điểm AB và D là điểm đối xứng của H qua I. Chứng minh tứ giác BDAH là hình chữ nhật.
c) Gọi K là trung điểm AC và E là điểm đối xứng của H qua K. Chứng minh AECH là hình chữ nhật. Suy ra
ba điểm D, A, E thẳng hàng.
d) Chứng minh D đối xứng với E qua A
Cho ∆ ABC cân tại A. Gọi K là trung điểm của AC, D là trung điểm của BC.
Chứng minh tứ giác ABDK là hình thang.
b.Gọi M là điểm đối xứng của D qua K. Chứng minh tứ giác AMCD là hình chữ nhật.
c.Từ D vẽ DE ⊥ AC tại E. Gọi G và H lần lượt là trung điểm của DE và EC.
Chứng minh AG ⊥ BE.
GIẢI CÂU C THÔI Ạ
Cho tam giác ABC vuông tại AM là trung điểm của BC kẻ ME vuông AB MF vuông AC a. CMR: AEMF là hcn b. N là đối xứng của E qua M CMR: BECN là hình bình hành
1. Cho tam giác ABC , đường cao AH . Gọi I là trung điểm của AC . Lấy D là điểm đối xứng với
H qua I . Chứng minh tứ giác AHCD là hình chữ nhật.
2. Cho tam giác ABC vuông tại A, đường cao AH . Gọi I , K theo thứ tự là trung điểm của AB ,
AC . Chứng minh:
a) IHK � 90� � ; b) Chu vi �IHK bằng nửa chu vi �ABC .
3. Tìm x trong hình vẽ bên, Biết AB �13 cm, BC �15 cm, AD �10
cm.
4. Cho tứ giác ABCD có hai đường chéo vuông góc với nhau. Gọi E , F , G , H theo thứ tự là
trung điểm của các cạnh AB , BC , CD, DA . Chứng minh tứ giác HEFG là hình chữ nhật.
5. Cho hình thang cân ABCD ( AB CD � , AB CD � ). Gọi M , N , P , Q lần lượt là trung điểm
các đoạn thẳng AD , BD , AC , BC .
a) Chứng minh bốn điểm M , N , P , Q thẳng hàng;
b) Chứng minh tứ giác ABPN là hình thang cân;
c) Tìm một hệ thức liên hệ giữa AB và CD để ABPN là hình chữ nhật.
6. Cho tam giác ABC có đường cao AI . Từ A kẻ tia Ax vuông góc với AC , từ B kẻ tia By
song song với AC . Gọi M là giao điểm của tia Ax và tia By . Nối M với trung điểm P của AB ,
đường MP cắt AC tại Q và BQ cắt AI tại H .
a) Tứ giác AMBQ là hình gì? b) Chứng minh tam giác PIQ cân.
7. Cho tam giác ABC . Gọi O là một điểm thuộc miền trong của tam giác. M ,
N , P , Q lần lượt là trung điểm của các đoạn thẳng OB , OC , AC , AB .
a) Chứng minh tứ giác MNPQ là hình bình hành;
b) Xác định vị trí của điểm O để tứ giác MNPQ là hình chữ nhật.
Cho tam giác ABC có đường cao AH. Gọi I là trung điểm AC, trên tia đối của IH lấy điểm E sao cho IE = IH. Gọi M, N lần lượt là trung điểm của HC, CE. Các đường thẳng AM, AN cắt HE tại G và K.
a) Cm tứ giác AHCE là hình chữ nhật.
b) Cm HG= GK= KE.
giup mikk voiii
Cho tam giác ABC có đường cao AH. Gọi I là trung điểm AC, trên tia đối của IH lấy điểm E sao cho IE = IH. Gọi M, N lần lượt là trung điểm của HC, CE. Các đường thẳng AM, AN cắt HE tại G và K.
a) Cm tứ giác AHCE là hình chữ nhật.
b) Cm HG= GK= KE.
Cho \(\Delta\)ABC cân tại A,đường cao AH.Gọi M là trung điểm của AB,E là điểm đối xứng với H qua M.
a)Chứng minh tứ giác AHBE là hình chữ nhật
b)Gọi F đối xứng A qua BC.Chứng minh tứ giác ABFC là hình thoi
c)Gọi K là giao điểm của FM và BC.Chứng minh 4HK=CK