LG a
3√27−3√−8−3√125273−−83−1253
Phương pháp giải:
Tính từng căn bậc ba rồi thực hiện phép tính
Lời giải chi tiết:
3√27−3√−8−3√125=3√33−3√(−2)3−3√53273−−83−1253=333−(−2)33−533
=3−(−2)−5=3−(−2)−5
=3+2−5=0=3+2−5=0.
LG b
3√1353√5−3√54.3√4135353−543.43
Phương pháp giải:
Sử dụng các công thức:
3√a.b=3√a.3√ba.b3=a3.b3.
3√ab=3√a3√bab3=a3b3, với b≠0b≠0.
Lời giải chi tiết:
3√1353√5−3√54.3√4=3√27.53√5−3√54.4135353−543.43=27.5353−54.43
=3√5.3√273√5−3√216=53.27353−2163
=3√27−3√216=273−2163
=3√33−3√63=333−633
=3−6=−3=3−6=−3.
a) \(\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}=3+2-5=0\)
b) \(\dfrac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}.\sqrt[3]{4}=\sqrt[3]{27}-\sqrt[3]{216}=3-6=-3\)
a/ ∛27 - ∛-8 - ∛125 = ∛33 - ∛(-2)3 - ∛53
= 3 - (-2) - 5 = 3 + 2 - 5 = 0
b/ √
\(a,\\\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}\\ =3-\left(-2\right)-5\\ =3+2-5\\ =0\)
\(b,\\ \dfrac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}.\sqrt[3]{4}\\ =\sqrt[3]{27}-\sqrt[3]{216}\\ =3-6\\ =-3\)
a) \(\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}=\sqrt[3]{3^3}-\sqrt[3]{\left(-2\right)^3}-\sqrt[3]{5^3}\)
\(=3-\left(-2\right)-5=3+2-5=0\)
b) \(\dfrac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}\cdot\sqrt[3]{4}\)
\(=\sqrt[3]{\dfrac{135}{5}}-\sqrt[3]{54\cdot4}\)
\(=\sqrt[3]{27}-\sqrt[3]{216}\)
\(=\sqrt[3]{3^3}-\sqrt[3]{6^3}=3-6=-3\)
\(a,\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}\) \(=\sqrt[3]{3^3}-\sqrt[3]{\left(-2\right)^3}-\sqrt[3]{5^3}=3+2-5=0\)
\(b,\dfrac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}.\sqrt[3]{4}\) \(=\sqrt[3]{\dfrac{135}{5}}-\sqrt[3]{54.4}=\sqrt[3]{27}-\sqrt[3]{216}\) \(=\sqrt[3]{3^3}-\sqrt[3]{6^3}=3-6=-3\)
\(\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}=3-\left(-2\right)-5=0\)
\(\dfrac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}\cdot\sqrt[3]{4}=\sqrt[3]{\dfrac{125}{5}}-\sqrt[3]{54\cdot4}=3-6=-3\)
a) \(\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[5]{125}\)
\(=\sqrt[3]{3^3}-\sqrt[3]{\left(-2\right)^3}-\sqrt[3]{5^3}\)
\(=3-\left(-2\right)-5\)
= 0
b) \(\dfrac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}.\sqrt[3]{4}\)
\(=\sqrt[3]{\dfrac{135}{5}}-\sqrt[3]{54.4}\)
\(=\sqrt[3]{27}-\sqrt[3]{216}\)
\(=\sqrt[3]{3^3}-\sqrt[3]{6^3}\)
\(=3-6\)
= -3
a/=3-(-2)-5=3+2-5=0
b/3-6=-3
\(a.\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}=\sqrt[3]{3^3}-\sqrt[3]{-2^3}-\sqrt[3]{5^3}=3-\left(-2\right)-5=0\)
\(b.\dfrac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}.\sqrt[3]{4}=\sqrt[3]{\dfrac{135}{5}}-\sqrt[3]{54.4}=\sqrt[3]{27}-\sqrt[3]{216}=\sqrt[3]{3^3}-\sqrt[3]{6^3}=3-6=-3\)
\(\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}=3-\left(-2\right)-5=0\dfrac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}.\sqrt[3]{4}=\sqrt[3]{\dfrac{135}{5}}-\sqrt[3]{54.4}=3-6=-3\)
a)\(\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}=\sqrt[3]{3^3}-\sqrt[3]{\left(-2\right)^3}-\sqrt[3]{5^3}=3-\left(-2\right)-5=3+2-5=0\)
b)\(\dfrac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}.\sqrt[3]{4}=\dfrac{\sqrt[3]{27.5}}{\sqrt[3]{5}}-\sqrt[3]{54.4}=\dfrac{\sqrt[3]{27}.\sqrt[3]{5}}{\sqrt[3]{5}}-\sqrt[3]{216}=\sqrt[3]{27}-\sqrt[3]{216}=\sqrt[3]{3}-\sqrt[3]{6}=3-6=-3\)
\(a,\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}=3-\left(-2\right)-5=5-5=0\)
\(b,\dfrac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}.\sqrt[3]{4}=\sqrt[3]{\dfrac{135}{5}}-\sqrt[3]{54.4}=\sqrt[3]{27}-\sqrt[3]{216}=3-6=-3\)
\(a\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}=\sqrt[3]{\left(3\right)^3}-\sqrt[3]{\left(-2\right)^2}-\sqrt[3]{\left(5\right)^{ }3}=3-\left(-2\right)-5=0\)
b\(\dfrac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}.\sqrt[3]{4}=\sqrt[3]{\dfrac{135}{5}}-\sqrt[3]{54.4}=\sqrt[3]{27}-\sqrt[3]{216}=3-6=-3\)
a) kết quả = 0
b)kết quả = -3
\(b)\dfrac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}.\sqrt[3]{4}=\sqrt[3]{27}-\sqrt[3]{27}.\sqrt[3]{8}=3-3.2=-3\) \(\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}=\sqrt[3]{3^3-2-\sqrt[3]{5^3}=3-2-5=0}\)
a)=3-(-2)-5=0 ; b)=3-6=-3