a, \(ab+b\sqrt{a}+\sqrt{a}+1=\sqrt{a}b\left(\sqrt{a}+1\right)+\sqrt{a}+1\)
\(=\left(b\sqrt{a}+1\right)\left(\sqrt{a}+1\right)\)
b, \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)
\(=\sqrt{x^2}\left(\sqrt{x}+\sqrt{y}\right)-\sqrt{y^2}\left(\sqrt{y}+\sqrt{x}\right)=\left(\left|x\right|-\left|y\right|\right)\left(\sqrt{x}+\sqrt{y}\right)\)
a) \(ab+b\sqrt{a}+\sqrt{a}+1=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)=\left(b\sqrt{a}+1\right)\left(\sqrt{a}+1\right)\)
b) \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}=x\left(\sqrt{x}+\sqrt{y}\right)-y\left(\sqrt{x}+\sqrt{y}\right)=\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)\)
a,\(ab+b\sqrt{a}+\sqrt{a}+1=b\sqrt{a}(\sqrt{a}+1)+ \sqrt{a}+1=(\sqrt{a}+1)(b\sqrt{a}+1)\)
b,\(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}=(x-y)(\sqrt{x}+\sqrt{y})\)
a)\(ab+b\sqrt{a}+\sqrt{a}+1\)
=\(\left(ab+b\sqrt{a}\right)+\left(\sqrt{a}+1\right)\)
=\([\left(\sqrt{a}\right)^2b+b\sqrt{a}]+\left(\sqrt{a}+1\right)\)
=\(\left(\sqrt{a}.\sqrt{a}.b+b\sqrt{a}\right)+\left(\sqrt{a}+1\right)\)
=\(b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)\)
=\(\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)
b)
a) ab + b√a + √a + 1 = [(√a)2b + b√a] + (√a + 1)
= b√a(√a + 1) + (√a + 1) = (√a + 1)(b√a + 1)
= (√x - √y)(√x + √y)2
= (√x - √y)(√x + √y)(√x + √y)
= (x - y)(√x + √y)
a\(\left(\sqrt{a}+1\right)\left(\sqrt{a}b+1\right)\)b\(\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)\)
a) ab + b√a + √a + 1 = [(√a)2b + b√a] + (√a + 1)
= b√a(√a + 1) + (√a + 1) = (√a + 1)(b√a + 1)
a,(\(\sqrt{a}\)+1)(\(b\sqrt{a}+1\))
b, (x-y)(\(\sqrt{x}+\sqrt{y}\))
a = (cana +1)(b can a +1 )
b =(x -y )(canx +can y)
a, \(ab+b\sqrt{a}+\sqrt{a}+1=\sqrt{a}.\sqrt{a}.b+\sqrt{a}+b\sqrt{a}+1=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)
b,\(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}=\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)\)