Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tnnhッ

Bài 5: Cho tam giác ABC cân tại A có A = 200, vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giá của góc ABD cắt AC tại M. Chứng minh:

a) Tia AD là phân giác của góc BAC

b) AM = BC

Bài 6:: Tìm x , y ∈ N biết: 25 - y 2 = 8( x - 2009)2

chuche
13 tháng 12 2021 lúc 14:43

Tham Khảo:

 

Bài 5

Vẽ hình, ghi GT, KL đúng    0,5đ

a. Chứng minh ΔADB = ΔADC (c - c - c)   1đ

Suy ra \widehat {DAB} = \widehat {DAC}

Do đó: \widehat {DAB} = 200 : 2 = 100

b. Ta có: ΔABC cân tại A, mà \widehat A = 200 (gt) nên \widehat {ABC} = (1800 - 200) : 2 = 800

ΔABC đều nên \widehat {DBC} = 600

Tia BD nằm giữa hai tia BA và BC suy ra \widehat {ABD} = 800 - 600 = 200

Tia BM là tia phân giác của góc ABD nên \widehat {ABM} = 100

Xét ΔABM và ΔBAD ta có:

AB là cạnh chung

\begin{gathered}
  \widehat {BAM} = \widehat {ABD} = {20^0} \hfill \\
  \widehat {ABM} = \widehat {DAB} = {10^0} \hfill \\ 
\end{gathered}

Vậy ΔABM = ΔBAD (g - c - g)

Suy ra AM = BD, mà BD = BC (gt) nên AM = BC

 

Nguyễn Hoàng Minh
13 tháng 12 2021 lúc 14:50

Bài 6:

Ta có \(8\left(x-2009\right)^2\) chẵn, \(25\) lẻ nên \(y^2\) lẻ

Mà \(25-y^2=8\left(x-2009\right)^2\ge0\Leftrightarrow y^2\le25\)

Mà \(y\in \mathbb{N}\) nên \(y^2\in\left\{1;9;25\right\}\)

Với \(y^2=1\Leftrightarrow8\left(x-2009\right)^2=24\Leftrightarrow\left(x-2009\right)^2=3\left(loại\right)\)

Với \(y^2=9\Leftrightarrow8\left(x-2009\right)^2=16\Leftrightarrow\left(x-2009\right)^2=2\left(loại\right)\)

Với \(y^2=25\Leftrightarrow8\left(x-2009\right)^2=0\Leftrightarrow x-2009=0\Leftrightarrow x=2009\)

Vậy PT có nghiệm \(\left(x;y\right)\) là \(\left(2009;5\right);\left(2009;-5\right)\)


Các câu hỏi tương tự
Xem chi tiết
Nguyen gia hao
Xem chi tiết
Min
Xem chi tiết
nguyễn thị yến như
Xem chi tiết
OoO Kún Chảnh OoO
Xem chi tiết
Thanh Nhàn ♫
Xem chi tiết
Mii ssll Tứ Diệp Thảo
Xem chi tiết
Vũ Đăng Dương
Xem chi tiết
Lê Đình Bảo
Xem chi tiết