Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Help Me

Bài 4: Cho tam giác ABC có AB = AC. Ly đim M trên cnh AB, đim N trên cnh AC sao cho AM = AN.

a)Chng minh BN = CM.

b)Gi I là giao đim ca BN và CM. Chng minh ∆ BIM = ∆ CIN.

c)Chng minh AI là phân giác ca BÂC.

d)Chng minh MN // BC.

Cần Gấp ạ

Thanh Hoàng Thanh
8 tháng 1 2022 lúc 9:07

a) Xét tam giác ABN và tam giác ACM:

+ AB = AC (gt).

\(\widehat{A}\) chung

+ AM = AN (gt).

\(\Rightarrow\) Tam giác ABN = Tam giác ACM (c - g - c).

\(\Rightarrow\) BN = CM (2 cạnh tương ứng).

b) Ta có: AB = AM + MB; AC = AN + NC.

Mà AB = AC (gt); AM = AN (gt).

\(\Rightarrow\) MB = NC.

Ta có: \(\widehat{BMI}+\widehat{AMI}=180^{o}.\)

          \(\widehat{CNI}+\widehat{ANI}=180^{o}.\)

Mà \(\widehat{AMI}=\widehat{ANI}\) (Tam giác ABN = Tam giác ACM).

\(\Rightarrow\) \(\widehat{BMI}=\widehat{CNI}.\)

Xét tam giác BIM và tam giác CIN:

\(\widehat{BMI}=\widehat{CNI}(cmt).\)

\(\widehat{MBI}=\widehat{NCI}\) (Tam giác ABN = Tam giác ACM).

+ MB = NC (cmt).

\(\Rightarrow\) Tam giác BIM = Tam giác CIN (g - c - g).

c) Xét tam giác BAI và tam giác CAI có:

+ AI chung.

+ AB = AC (gt).

+ BI = CI (Tam giác BIM = Tam giác CIN)

\(\Rightarrow\) Tam giác BAI = Tam giác CAI (c - c - c).

\(\Rightarrow\) \(\widehat{BAI}=\widehat{CAI}\) (2 góc tương ứng).

\(\Rightarrow\) AI là phân giác \(\widehat{BAC}.\)

d) Xét tam giác AMN có: AM = AN (gt).

\(\Rightarrow\) Tam giác AMN cân tại A.

\(\Rightarrow\) \(\widehat{AMN}=\) \(\dfrac{180^o-\widehat{A}}{2}.\) (1)

Xét tam giác ABC có: AB = AC (gt).

\(\Rightarrow\) Tam giác ABC cân tại A.

\(\Rightarrow\) \(\widehat{ABC}=\) \(\dfrac{180^o-\widehat{A}}{2}.\) (2)

Từ (1); (2) \(\Rightarrow\widehat{AMN}=\widehat{ABC}.\Rightarrow\) \(MN\) // \(BC.\)

Bài 4: Cho tam giác ABC có AB = AC. Lấy điểm M trên cạnh AB, điểm N trên cạnh AC sao cho AM = AN.
a) Chứng minh BN = CM.

 b) Gọi I là giao điểm của BN và CM. Chứng minh ∆ BIM = ∆ CIN.
c) Chứng minh AI là phân giác của góc BÂC.

 d) Chứng minh MN // BC.


Các câu hỏi tương tự
Hoàng bình phương
Xem chi tiết
Thư Hoàng
Xem chi tiết
Trần Tường Vi
Xem chi tiết
van
Xem chi tiết
Nguyễn Phương Thy
Xem chi tiết
Lê Thanh Hải
Xem chi tiết
Phúc Nguyễn
Xem chi tiết
Trâm
Xem chi tiết
Trâm
Xem chi tiết