a) Vì ΔABCΔABC cân tại A => Bˆ=CˆB^=C^
mà AD là đường cao
=> AD là đường trung tuyến ΔABCΔABC
=> BD = DC
Xét ΔBEDΔBED và ΔCFDΔCFD có:
BEDˆ=CFDˆ(900)BED^=CFD^(900)
BD = DC (cmt)
Bˆ=Cˆ(cmt)B^=C^(cmt)
Do đó: ΔBED=ΔCFD(ch−gn)ΔBED=ΔCFD(ch−gn)
=> BE = CF (hai cạnh tương ứng)
b) Vì ΔBED=ΔCFD(cmt)ΔBED=ΔCFD(cmt)
=> ED = DF (hai cạnh tương ứng)
=> ΔEDFΔEDF cân tại D
=> D ∈∈ đường trung trực cạnh EF (1)
Xét ΔAEDΔAED và ΔAFDΔAFD có:
AD (chung)
AEDˆ=AFDˆ(=900)AED^=AFD^(=900)
ED = DF (cmt)
Do đó: ΔAED=ΔAFDΔAED=ΔAFD (cạnh huyền- cạnh góc vuông)
=> AE = AF(hai cạnh tương ứng)
=> ΔAEFΔAEF cân tại A
=> A ∈∈ đường trung trực cạnh EF (2)
(1); (2) => AD là đường trung trực cạnh EF
c) ta có: AD ⊥⊥ BC và AD⊥EFAD⊥EF
=> BC // EF
Gọi giao điểm của FM và DC là H ta có:
Xét ΔBEDΔBED và ΔCMDΔCMD có:
ED = DM (gt)
EDBˆ=CDMˆEDB^=CDM^ (đối đỉnh)
BD = DC (cmt)
Do đó: ΔBED=ΔCMDΔBED=ΔCMD (c-g-c)
mà ΔBED=ΔCFDΔBED=ΔCFD
=> ΔCMD=ΔCFDΔCMD=ΔCFD
=> CF = CM (hai cạnh tương ứng)
=> ΔFCMΔFCM cân tại C
=> C ∈∈đường trung trực cạnh FM (1)
DE = DF (cmt)
mà DE = DM
=> DF = DM
=> ΔFDMΔFDM cân tại D
=> D ∈∈ đường trung trực cạnh FM (2)
(1); (2) => DC là đường trung trực cạnh FM
=> DH ⊥⊥ FM
mà BC // EF
=> EF ⊥⊥ FH
=> EFMˆ=900EFM^=900 hay ΔEFMΔEFM vuông tại F
d) Vì ΔBED=ΔCMDΔBED=ΔCMD
=> BEDˆ=CMDˆ=900BED^=CMD^=900(hai góc tương ứng)
=> BE//CM(so le trong)