Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyễn chi

Bài 3: Cho ΔABC vuông tại A , vẽ tia phân giác BD của góc ABC (D  AC). Trên cạnh BC lấy điểm E sao cho BE = AB . a) Chứng minh: ΔABD = ΔEBD b) Chứng minh: Tam giác ADE là tam giác cân. Vẽ AH vuông góc với BC (H  BC) . Chứng minh : AH // DE và BAH ACH  c) Chứng minh: AE là tia phân giác của góc HAC. d) Gọi K là giao điểm của AB và ED. Chứng minh: AK = EC và AE // 

sjfdksfdkjlsjlfkdjdkfsl
25 tháng 2 2020 lúc 13:20

a) Xét tgiac ABD và EBD có:

+ AB = BE

+ BD chung

+ góc ABD = EBD 

=> Tgiac ABD = EBD (c-g-c)

=> đpcm

b) Tgiac ABD = EBD (cmt) => AD = DE (hai cạnh t/ứng)

Xét tgiac ADE có AD = DE => Tgiac ADE cân tại D

=> đpcm

c) AH \(\perp\)BC, DE\(\perp\)BC => AH\(//\)DE

=> góc HAE = AED (2 góc SLT do AH\(//\)DE)

Mà tgiac ADE cân tại D (cmt) => góc AED = DAE

=> góc HAE = DAE

=> AE là tia pgiac góc HAC (đpcm)

d) Xét tgiac ADK và EDC có:

+ góc DAK = DEC = 90o

+ góc ADK = EDC (2 góc đối đỉnh)

+ AD = DE (do tgiac ABD = EBD)

=> Tgiac ADK = EDC (g-c-g)

=> AK = EC và KD = DC (2 cạnh t/ứng)

=> Tgiac KDC cân tại K => Góc DCK = (180o- góc KDC) /2

Tgiac AED cân tại D => góc EAD = (180o- góc ADE) /2

Mà góc ADE = KDC (2 góc đối đỉnh) => góc DCK = EAD

Mà 2 góc này SLT => AE \(//\)KC

=> đpcm

Khách vãng lai đã xóa

Các câu hỏi tương tự
Mavis
Xem chi tiết
Phương Uyên Võ Ngọc
Xem chi tiết
Mai Việt Anh
Xem chi tiết
Nguyễn Ngọc Linh
Xem chi tiết
Hanna Giver
Xem chi tiết
Phạm Thùy Linh
Xem chi tiết
Trần Minh Chiến
Xem chi tiết
túwibu
Xem chi tiết
Mây Trắng
Xem chi tiết