Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{64}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{64}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}\right)\)
\(A=1-\frac{1}{128}=\frac{127}{128}\)
Ủng hộ mk nha ^_-
\(2\cdot A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{64}\)
\(A=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{64}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}\right)\)
\(A=1-\frac{1}{128}=\frac{128}{128}-\frac{1}{128}=\frac{127}{128}\)