Tìm x, biết:
\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right).x=\frac{2009}{1}+\frac{2010}{2}+\frac{2011}{3}+...+\frac{4016}{2008}-2008\)
1+\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{x.\left(x+1\right)}=1\frac{2008}{2010}\)
1.Tính tổng
\(S=\left(\frac{-1}{7}\right)^0+\left(\frac{-1}{7}\right)^1+\left(\frac{-1}{7}\right)^2+...+\left(\frac{-1}{7}\right)^{2007}\)
2.Tìm x
\(5^x+5^{x+2}=650\)
3.CMR
\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
4. Cho \(A=\frac{1}{2010}+\frac{2}{2009}+\frac{3}{2008}+...+\frac{2009}{2}+\frac{2010}{1}\)
\(B=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2010}+\frac{1}{2011}\)
So sánh A và B
a, \(\dfrac{5}{2}-3\left(\dfrac{1}{3}-x\right)=\dfrac{1}{4}-7x\)
b, \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2008}\right).x=\dfrac{2009}{1}+\dfrac{2010}{2}+...+\dfrac{5016}{2008}-2008\)
c, \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2001}{2003}\)
GIÚP VỚI , MIK CẦN GẤP
Tìm x thoả mãn:
a)\(\frac{1}{2}x-\frac{3}{4}x-\frac{7}{3}=-\frac{5}{6}\)
b)\(\frac{4}{5}x-x-\frac{3}{2}x+\frac{4}{3}=\frac{1}{2}-\frac{6}{5}\)
c)\(\frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{x.\left(x+1\right)}=\frac{2009}{2010}\)
d)\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{2013}{2015}\)
e)\(\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{100}{609}\)
3. Tìm x biết :
\(\frac{x-1}{2011}+\frac{x-2}{2010}+\frac{x-3}{2009}=\frac{x-4}{2008}\)
2. Tìm x nguyên biết :
\(1-3+3^2-3^3+...+\left(-3\right)^x=\frac{9^{1006}-1}{4}\)
Bài 1: Tìm x biết:
a. \(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right)\left(5x+6\right)}=\frac{2010}{2011}\)
b. \(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+..+\frac{4}{41.45}=\frac{29}{45}\)
c. \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+2\right)}:2\)
d. (x-20) . \(\frac{\frac{1}{2}+\frac{1}{3}+..+\frac{1}{2000}}{\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}}=\frac{1}{2000}\)
Bài 2:
\(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\left(n,a\right)\in Nsao\)
Bài 3:
a)\(\frac{3}{x}+\frac{y}{3}=\frac{5}{6}\)
b) \(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\)
c) \(\frac{x}{2}+\frac{y}{3}=\frac{x+y}{2+3}\)
d) \(\frac{x-1}{9}+\frac{1}{3}=\frac{1}{y+2}\)
tìm x
a) \(\frac{x-1}{2}+\frac{x-2}{5}=\frac{1}{4}+\frac{x-7}{10}\)
b) \(3-\frac{2}{2x-3}=\frac{2}{5}+\frac{1}{2x-3}-\frac{3}{2}\)
c)\(7\cdot\left(x-1\right)+2x\cdot\left(1-x\right)=0\)
d) \(\frac{x+1}{2008}+\frac{x+2}{2017}+\frac{x+3}{2016}=\frac{x+10}{2009}+\frac{x+11}{2008}+\frac{x+12}{2007}\)
e) \(\frac{2}{\left(x-1\right)\cdot\left(x-3\right)}+\frac{5}{\left(x-3\right)\cdot\left(x-8\right)}+\frac{12}{\left(x-8\right)\cdot\left(x-20\right)}-\frac{1}{x-20}=\frac{-3}{4}\)
Bài 1. Tính:
a) (2008.2009.2010.2011).\(\left(1+\frac{1}{2}:\frac{3}{2}-\frac{4}{3}\right)\)
Bài 2. Tìm x biết:
a)\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
b)\(\frac{1}{2}.\frac{1}{3}.\frac{1}{4}.\frac{1}{5}.\frac{1}{6}.\left(x-1,010\right)=\frac{1}{360}-\frac{1}{720}\)