Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hồng Mai

Bài 2: Cho hình vẽ bên. Biết rằng GF = 4cm, FH = 3cm, I là trung điểm GF, IK//FH. a) Tính GK. b) Cmr:  KGF cân c) Cmr:  KFH cân (bằng 2 cách) d) Hạ KM vuông góc với FH. Cmr: M là trung điểm FH(bằng 3 cách) e) Tính độ dài IM.

image

 

 

Lấp La Lấp Lánh
19 tháng 8 2021 lúc 8:51

a) Ta có: \(GI=IF=\dfrac{GF}{2}\) ( do I là trung điểm GF)

\(\Rightarrow GI=GF=\dfrac{4}{2}=2\left(cm\right)\)

Xét ΔABC có:

I là trung điểm của GF(gt)

IK//FH(gt)

=> K là trung điểm của GH
=> IK là đường trung bình của tam giác ABC
=> \(IK=\dfrac{1}{2}FH=\dfrac{1}{2}.3=\dfrac{3}{2}\)(cm)

Xét tam giác GIK vuông tại I có:
\(GK^2=GI^2+IK^2\)( định lý Pytago)
\(\Rightarrow GK=\sqrt{GI^2+IK^2}=\sqrt{2^2+\left(\dfrac{3}{2}\right)^2}=\dfrac{5}{2}\left(cm\right)\)

b) Xét tam giác KGF có:

\(KI\perp GF\)( KI //FH, FH⊥GF=> KI⊥GF)

KI là đường trung tuyến( I là trung điểm của GF)

=> Tam giác KGF cân tại K

c) Cách 1:

Xét tam giác GCH vuông tại C có

FK là đường trung tuyến ứng với cạnh huyền GH( K là trung điểm của GH)

=> \(FK=\dfrac{1}{2}GH=KH\) \(\Rightarrow\Delta FKH\) cân tại K

Cách 2:

Xét tam giác GFH có:

IK là đường trung bình

=> IK//FH \(\Rightarrow\left\{{}\begin{matrix}\widehat{IKF}=\widehat{KFH}\\\widehat{GKI}=\widehat{KHF}\end{matrix}\right.\) 

Mà \(\widehat{GKI}=\widehat{IKF}\) ( do tam giác GKF cân tại K nên KI là tia phân giác \(\widehat{GKF}\))

\(\Rightarrow\widehat{KFH}=\widehat{KHF}\Rightarrow\Delta KFH\) cân tại K

 

Lấp La Lấp Lánh
19 tháng 8 2021 lúc 9:05

d) Cách 1:

Xét tam giác KFH cân tại K có:

 KM là đường cao ( KM⊥FH)

=>KM là đường trung tuyến => M là trung điểm của FH

Cách 2:

Xét tứ giác IKMF có:

\(\widehat{KIF}=\widehat{IFM}=\widehat{FMK}=90^0\) => Tứ giác IKMF là hình chữ nhật

=> IK =FM mà \(FM=\dfrac{1}{2}FH\Rightarrow IK=\dfrac{1}{2}FH\Rightarrow M\) là trung điểm của FH

Cách 3:

Xét tam giác GFH có:

K là trung điểm của GH(IK là đường trung bình)

KM//GF( cùng vuông góc với FH)

=> M là trung điểm của FH 

e) Xét tam giác GCH vuông tại C có:

\(GH^2=GC^2+CH^2\Rightarrow GH=\sqrt{GC^2+CH^2}=\sqrt{4^2+3^2}=5\left(cm\right)\)

Ta có: Tứ giác IKMF là hình chữ nhật

\(\Rightarrow IM=FK=\dfrac{1}{2}GH=\dfrac{1}{2}.5=\dfrac{5}{2}\left(cm\right)\)

 


Các câu hỏi tương tự
Đặng Hồ Nam
Xem chi tiết
Băng Vũ
Xem chi tiết
Hoàng văn tiến
Xem chi tiết
ngô thị gia linh
Xem chi tiết
Hoàng Anh Tuấn
Xem chi tiết
yêu húa
Xem chi tiết
miner ro
Xem chi tiết
tran khanh my
Xem chi tiết
Mèo Méo
Xem chi tiết