1, CMR: tổng của 3 số tự nhiên liên tiếp chia hết cho 3, tổng của 5 số tự nhiên liên tiếp thì chia hết cho 5
2,CMR:
+ tổng của 3 số chẵn liên tiếp thì chia hết cho 6
+ tổng của 3 số lẻ liên tiếp thì không chia hết cho 6
+ tổng của 5 số chẵn liên tiếp thì chia hết cho 10 còn tổng của 5 số lẻ liên tiếp thì chia 10 dư 5
các bn ơi giải giúp mik bài này vs
CMR
a) với mọi n thuộc N thì 60n + 45 chia hết cho 15 nhưng không chia hết cho 30
b) tổng ba số nguyên liên tiếp chia hết cho 3 , tổng 4 số nguyên liên tiếp không chia hết cho 4
c) Tổng 5 số chẵn liên tiếp chia hết cho 10 , tổng 5 số lẻ liên tiếp chia 10 dư 5
d) Cho 4 số tự nhiên không chia hết cho 5 , khi chia cho 5 được các số dư khác nhau . CM : tổng của chúng chia hết cho 5
các bn ơi giải giúp mik bài này vs
CMR
a) với mọi n thuộc N thì 60n + 45 chia hết cho 15 nhưng không chia hết cho 30
b) tổng ba số nguyên liên tiếp chia hết cho 3 , tổng 4 số nguyên liên tiếp không chia hết cho 4
c) Tổng 5 số chẵn liên tiếp chia hết cho 10 , tổng 5 số lẻ liên tiếp chia 10 dư 5
d) Cho 4 số tự nhiên không chia hết cho 5 , khi chia cho 5 được các số dư khác nhau . CM : tổng của chúng chia hết cho 5
các bn ơi giải giúp mik bài này vs
CMR
a) với mọi n thuộc N thì 60n + 45 chia hết cho 15 nhưng không chia hết cho 30
b) tổng ba số nguyên liên tiếp chia hết cho 3 , tổng 4 số nguyên liên tiếp không chia hết cho 4
c) Tổng 5 số chẵn liên tiếp chia hết cho 10 , tổng 5 số lẻ liên tiếp chia 10 dư 5
d) Cho 4 số tự nhiên không chia hết cho 5 , khi chia cho 5 được các số dư khác nhau . CM : tổng của chúng chia hết cho 5
Bài 1 : Cho 7 số tự nhiên bất kì. CMR bao giờ cũng có thể chọn ra 2 số có hiệu chia hết cho 6
Bài 2 : CMR trong 6 số tự nhiên liên tiếp luôn tìm được hiệu 2 số chia hết cho 5
Bài 3 : Cho 3 số lẻ. CMR tồn tại 2 số có tổng và hiệu chia hết cho 8
Bài 1 : Với 39 số tự nhiên liên tiếp hỏi rằng có thể tìm được 1 số mà tổng các chữ số của nó chia hết cho 11 hay không ?
Bài 2 : CMR trong 52 số tự nhiên , trí ít cũng có một cặp gồm 2 số sao cho tổng hoặc hiệu của chúng chia hết cho 100
Bài 3 : CMR có thể tìm được số tự nhiên K sao cho 1983^k - 1 chia hết cho 10^5
bài 2: cho A= 1+2 + 3+ 4+ ... + n
a) với n = 2009 . cmr: A chia hết cho 2009 và A ko chia hết cho 2010
b) cmr: ( A- 7 ) ko chia hết cho 10 với mọi số tự nhiên n
bài 1 :
cho a= n^2+n+1
a, cmr a là số tự nhiên lẻ với mọi số tự nhiên n
b, cmr a ko chia hết cho 5 với mọi số tự nhiên n