Bài 1:Cho x>0;y>0 và \(x+y\le1\) tìm GTNNc của các bt sau
a,\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}\)
\(b,B=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
Bà 2:Cho x+y=1 tìm GTNN của bt
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
Bài 3:Cho x+y+z=3
a,Tìm GTNN của bt \(A=x^2+y^2+z^2\)
b,Tìm GTLN của bt \(B=xy+yz+xz\)
1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
b/
\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)
\(=16+8+20=44\)
\(\Rightarrow B\ge11\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
2/
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}\ge\frac{\left(1+\frac{4}{x+y}\right)^2}{2}=\frac{25}{2}\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
3/a/
\(A=x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{9}{3}=3\)
b/
\(B=xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=\frac{9}{3}=3\)
Alibaba Nguyễn ơi sao mà câu 3a \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\) thế
Câu 1a áp dụng bất cosi dạng engel cho 3 số bất đó như sau:
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
Cái thứ 2 áp dụng bất cosi cho 2 số dương. Nó có dạng như sau:
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
Áp dụng 2 cái này mà làm câu a.