a)Xét \(2A=2+2^2+....+2^{2015}\)
nên \(2A-A=2^{2015}-1\)
=>\(A=2^{2015}-1\)
b)Ta có :\(2^5=32\equiv-1\left(mod31\right)\)
=>\(2^{2015}\equiv-1\left(mod31\right)\)
=>\(2^{2015}-1\equiv-2\left(mod31\right)\)(kiểm tra lại đề bài đi bạn)
a)Xét \(2A=2+2^2+....+2^{2015}\)
nên \(2A-A=2^{2015}-1\)
=>\(A=2^{2015}-1\)
b)Ta có :\(2^5=32\equiv-1\left(mod31\right)\)
=>\(2^{2015}\equiv-1\left(mod31\right)\)
=>\(2^{2015}-1\equiv-2\left(mod31\right)\)(kiểm tra lại đề bài đi bạn)
BÀi 1: Chứng minh rằng: n2+n+6 chia hết cho 2
Bài 2:
Chứng minh rằng:n3+5n chia hết cho 6
Bài 3 Chứng minh rằng: (n+20132012). (n+20122013) chia hết cho 2
Bài 4 : Chứng tỏ rằng:
a, 1038+8 chia hết cho 18
b, 1010+14 chia hết cho 16
Các bạn giúp mình nhé!
CÁC BẠN LÀM ĐƯỢC CÂU NÀO THÌ LÀM , KO BẮT BUỘC LÀM CẢ NHÉ. MÌNH CẢM ƠN TRƯỚC!
Bài 1: Cho số nguyên x sao cho x chia cho 7 dư 2. Chứng tỏ rằng 2x + 3 chia hết 7.
Bài 2: 1) Chứng minh rằng 20 + 21 + 22 + 23 + …. + 25n-3 + 25n-2 + 25n-1 chia hết cho 31 với n là số nguyên dương bất kì.
2) Hai số nguyên tố gọi là sinh đôi nếu chúng là hai số nguyên tố và là hai số lẻ liên tiếp. Chứng minh rằng số tự nhiên lớn hơn 4 và nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6.
Bài 3: Cho tam giác ABC có = 80 độ. Điểm D nằm giữa B và C sao cho = 20 độ. Trên nửa mặt phẳng chứa B bờ AC, vẽ tia Ax sao cho = 25 độ , tia này cắt CB ở E. 1) Chứng tỏ rằng E nằm giữa D và C. 2) Tính 3) Xác định vị trí của tia Ay nằm giữa hai tia AB và AC sao cho
Bài 4. 1) Tìm các số tự nhiên a, b thỏa mãn (2014a + 1)(2014a + 2) = 3b + 5
Bài 2: Chứng minh rằng: n2+n+6 chia hết cho 2
Bài 3: Chứng minh rằng: n3+5n chia hết cho 6
Bài 4: Chứng minh rằng: (n+20122013).(n+20132012) chia hết cho 2
Bài 5: Chứng tỏ rằng
a, 1038+8 chia hết cho 18
b, 1010+14 chia hết cho 16
Các bạn giúp mình nhé.
Bài 1: Tính tổng
a) S1 = 1 - 2 + 3 - 4 +...+ 1997 - 1998 + 1999
b) S2 = 1 - 4 + 7 - 10 +...-2998 + 3001
Bài 2: Chứng minh rằng nếu 6x + 11y chia hết cho 31 thì x + 7y cũng chia hết cho 31
cho A bằng 2 mũ 1 + 2 mũ 2 +2 mũ 3 + ..... + 2 mũ 120
chứng minh rằng A chia hết cho 7
chứng minh rằng A chia hết cho 31
chứng minh rằng A chia hết cho 217
a/Tính tổng
M=1/5^0+1/5^1+1/5^2+...+1/5^2012
b/Chứng minh rằng 2012^2013-1 và 2012^2013+1 không cùng là số nguyên tố
c/Chứng minh rằng 2+2^2+2^3+...+2^2009+2^2010 chia hết cho 42
Bài 1: Chứng minh rằng tổng sau chia hết cho 7: A= 2^1 + 2^2 + 2^3 + 2^4 + ... + 2^59 + 2^60
Bài 2: a) Cho A= 999993^1999 - 555557^1997. Chứng minh rằng A chia hết cho 5
b) Chứng tỏ rằng: 1/41 + 1/42 + 1/43 + ... + 1/79 + 1/80 > 7/12
Bài 3: Chứng tỏ rằng: 2x + 3y chia hết cho 17 <=> 9x + 5y chia hết cho 17
Bài 1: Cho A= 2 + 2 ^ 2 + 2 ^ 3 +.......+2^ 60 . Chứng tỏ rằng: 4 chia hết cho 3,5,7. Bài 2: Cho S= 1 + 5 ^ 2 + 5 ^ 4 + 5 ^ 6 +***+5^ 2020 . Chứng minh rằng S chia hết cho 313 Bài 3: Tính A= 5 + 5 ^ 2 + 5 ^ 3 +...+5^ 12
bài 12 : cho n là số tự nhiên . chứng minh rằng
a) (n+2013)(n+2014) chia hết cho 2
b)n(n+1)(n+2) chia hết cho và chia hết cho3
c)n(n+1)(2n+1) chia hế cho 2 và cho 3