b
\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+..+\frac{1}{70}\)
Ta thấy:
\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)( có 10 phân số \(\frac{1}{20}\)) = \(\frac{1}{20}\).10 = \(\frac{1}{2}\)
\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\)(có 10 phân số \(\frac{1}{30}\)) = \(\frac{1}{30}\).10 = \(\frac{1}{3}\)
\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\)( có 10 phân số \(\frac{1}{40}\)) = \(\frac{1}{40}\).10 = \(\frac{1}{4}\)
\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\)( có 10 phân số \(\frac{1}{50}\)) =\(\frac{1}{50}.10=\frac{1}{5}\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)( có 10 phân số \(\frac{1}{60}\)) =\(\frac{1}{60}.10=\frac{1}{6}\)
\(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}>\frac{1}{70}+\frac{1}{70}+...+\frac{1}{70}\)( có 10 phân số \(\frac{1}{70}\)) \(=\frac{1}{70}.10=\frac{1}{7}\)
=> A> \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}=\frac{223}{140}=\frac{699}{420}>\frac{560}{420}=\frac{4}{3}\)
=> A > \(\frac{4}{3}\)
có bài toán nào khó thì ib mk nha
a)
\(A=1+\frac{1}{2}+\frac{1}{3}+..+\frac{1}{99}\)
\(A=\left(1+\frac{1}{99}\right)+\left(\frac{1}{2}+\frac{1}{98}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)+\frac{1}{50}\)
\(A=\frac{100}{99}+\frac{100}{98.2}+...+\frac{100}{49.51}+\frac{1}{50}\)
\(A=100\left(\frac{1}{99}+\frac{1}{98.2}+...+\frac{1}{49.51}\right)+\frac{1}{50}\)
Ta Thấy \(100\left(\frac{1}{99}+\frac{1}{98.2}+...+\frac{1}{49.51}\right)⋮100\)mà \(\frac{1}{50}\)\(⋮̸\)100
=> A \(⋮̸\) 100
Nếu đề bài là \(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{51}+...+\frac{1}{99}\)thì bạn áp dụng cách tính bên trên của mk là ra hem