a)0,6.a
b)\(a^2\).(a-3)
c)36.(a-1)
d)\(\dfrac{1.a^2}{a-b}\).(a-b)
a) (do nên ).
b)
(do nên ).
c)
(do nên ).
nên
(doa) -0,6a
b) a^2(a-3)
c) 36(a-1)
d) a^2
a) Ta có:
(Vì nên .
b)
Vì ≥ 0 nên .
Vì hay nên .
.
Ta có: .
.
.
c)
Vì hay nên .
.
Ta có:
.
d)
Vì , với mọi nên .
Vì nên . Do đó .
.
.
a) √0,36a2=√0,36.√a2=0,6.|a|=−0,6a (do a<0 nên |a|=−a).
b) √a4.(3−a)2=√a4.√(3−a)2=a2.|3−a|=a2(a−3)
(do a>3 nên a−3>0 ⇒ |3−a|=a−3).
c) √27.48.(1−a)2=√33.3.42.(1−a)2=√34.42.(1−a)2
=√34.√42.√(1−a)2=32.4.|1−a|
=36(a−1) (do a>1 ⇒ a−1>0 nên |1−a|=a−1).
d) 1a−b.√a4.(a−b)2=1a−b.√a4.√(a−b)2
=1a−b.a2.|a−b|
=1a−b.a2.(a−b)=a2 (do a>b ⇒ a−b>0 nên
a) \(\sqrt{0,36.a^2}=\)-0,6.a
b) \(\sqrt{a^4.\left(3-a\right)^2}=a^2.\left(a-3\right)\)
c) \(\sqrt{27.48.\left(1-a\right)^2}=36.\left(a-1\right)\)
d) \(\dfrac{1}{a-b}.\sqrt{a^4.\left(a-b\right)^2}=a^2\)
a) \(\sqrt{0,36.a^2}=0,6\left(-a\right)\)
b) \(\sqrt{a^4.\left(3-a\right)^2}=a^2.\left(a-3\right)\)
c) \(\sqrt{27.48.\left(1-a\right)^2}=\sqrt{9.3.3.16.\left(1-a\right)^2}=3.3.4\left(a-1\right)=36\left(a-1\right)\)
d) \(\dfrac{1}{a-b}\sqrt{a^4\left(a-b\right)^2}=\dfrac{1}{a-b}.a^2.\left(a-b\right)=a^2\)
a) -0.6a
b) a2(a - 3)
c) 36(a - 1)
d) a2
a) (do nên ).
b)
(do nên ).
c) (do nên ).
d) (do nên ).
\(\sqrt{0,36.a^2}=\sqrt{\left(0,6.a\right)^2}=|0,6.a|=-0,6a\)
a,\(\sqrt{0,36a^2}\)=\(\sqrt{0,36}\).\(\sqrt{a^2}\)=0,6.|a| =-0,6|a| ( do a<0 nên |a|=-a)
b,\(\sqrt{a^4.\left(3-a\right)^2}\)= \(\sqrt{\left(a^2\right)}^2\).\(\sqrt{\left(3-a\right)}^2\)=a\(^2\). |3-a| =a\(^2\).(a-3)
(do a>3 nên a-3 >0 => |a-3| = a-3 )
c,\(\sqrt{27.48.\left(1-a^{ }\right)^2}\)=\(\sqrt{3^3.3.4^2.\left(1-a^{ }\right)^2}\)= \(\sqrt{3^4.4^2.\left(1-a\right)^2}\)=\(\sqrt{3^4}\).\(\sqrt{4^2}\)\(\sqrt{\left(1-a^{ }\right)^2}\)=3\(^2\).4|1-a|=36.(a-1)( do a>1 => a-1>0 nên |a-1| = a-1
d,\(\dfrac{1}{a-b}\).\(\sqrt{a^4.\left(a-b^{ }\right)^2}\)=\(\dfrac{1}{a-b}\).\(\sqrt{a^4}\).\(\sqrt{\left(a-b\right)^2}\)= \(\dfrac{1}{a-b}\). a\(^2\).|a-b|= \(\dfrac{1}{a-b}\).a\(^2\).(a-b) = a\(^2\)( do a>b => a-b >0 nên |a-b| = a-b
a=-0,6
b=a²(a-3)
c=a-1
d=a-b
a)\(\sqrt{0,36a^2}\) với a<0
=\(\left|0,6a\right|\)=\(-\left|0,6a\right|\) (vì a<0)
b) \(\sqrt{a^4.\left(3-a\right)^2}\) với a\(\ge\)3
=\(\sqrt{a^4}.\sqrt{\left(3-a\right)^2}\)
=\(\left|a^2\right|.\left|3-a\right|\)
=\(\left\{{}\begin{matrix}a.\left(a-3\right)=a^2-3a\left(a>3\right)\\0\left(a=3\right)\end{matrix}\right.\)
c) \(\sqrt{27.48\left(1-a\right)^2}\) với a>1
=\(\sqrt{27.48}.\sqrt{\left(1-a\right)^2}\)
=\(\sqrt{1296}.\left|1-a\right|\)
=\(36.\left(a-1\right)\) (vì a>1 ⇒1-a<0)
=\(-36+36a\)
d) \(\dfrac{1}{a-b}.\sqrt{a^4.\left(a-b\right)^2}\) với a>b
=\(\dfrac{1}{a-b}.\sqrt{a^4}.\sqrt{\left(a-b\right)^2}\)
=\(\dfrac{1}{a-b}.\left|a^2\right|.\left|a-b\right|\)
=\(\dfrac{1}{a-b}.a^2.\left(a-b\right)\) (vì a ≥ 0 ∀x ; a>b ⇒a-b >0)
=\(a^2\)
a,\(\sqrt{0,36.a^2}\) với a < 0
= \(|0,6a|=-0,6a\) ( vì a < 0 )
b,\(\sqrt{a^4.\left(3-a\right)^2}\) với a ≥ 3
=\(a^2|3-a|\) = \(a^2\left(3-a\right)\) ( vì a ≥ 3 ⇒ a-3 ≥ 3)
c,\(\sqrt{27.49.\left(1-a\right)^2}\) với a > 1
=\(\sqrt{9.3.3.16.\left(1-a\right)^2}\)
=\(\sqrt{36^2}.\sqrt{\left(1-a\right)^2}\)=\(36|1-a|\)\(=36\left(a-1\right)\) ( vì a > 1 ⇒ a-1 >1 )
d,\(\dfrac{1}{a-b}.\sqrt{a^4.\left(a-b\right)^2}\) với a > b
=\(\dfrac{1}{a-b}.a^2|a-b|\)
=\(\dfrac{1}{a-b}.a^2\left(a-b\right)\) \(=a^2\) ( vì a > b ⇒ a-b > 0)
(do nên ).
b)
(do nên ).
c)
(do nên ).
nên ).
(doa) \(\sqrt{0,36.a^2}=\left|0,6\right|=-0,6\left(via< 0\Rightarrow0,6a< 0\right)\)
b)\(\sqrt{a^4.\left(3-a\right)^2}=\sqrt{a^4}.\sqrt{\left(3-a\right)^2}=\left|a^2\right|.\left|3-a\right|=a^2.\left(a-3\right)\left(via\ge3\Rightarrow3-a\ge0\right)\)
c)\(\sqrt{27.48.\left(1-a\right)^2}=\sqrt{1296.\left(1-a\right)^2}=\sqrt{1296}.\sqrt{\left(1-a\right)^2}=36.\left|1-a\right|=36.\left(a-1\right)\left(via>1\right)\)
d)\(\dfrac{1}{a-b}.\sqrt{a^4.\left(a-b\right)^2}=\dfrac{1}{a-b}.\sqrt{\left(a^2\right)^2}.\sqrt{\left(a-b\right)^2}=\dfrac{1}{a-b}.\left|a^2\right|.\left|a-b\right|=\dfrac{1}{a-b}.a^2.(a-b)=a^2\left(via>0\Rightarrow a-b>0\right)\)
a) \sqrt{0,36a^2}=\sqrt{0,36}.\sqrt{a^2}=0,6.|a|=-0,6a 0,36a 2 = 0,36 . a 2 =0,6.∣a∣=−0,6a (do a<0a<0 nên |a|=-a∣a∣=−a). b) \sqrt{a^4.(3-a)^2}=\sqrt{a^4}.\sqrt{(3-a)^2}=a^2.|3-a|=a^2(a-3) a 4 .(3−a) 2 = a 4 . (3−a) 2 =a 2 .∣3−a∣=a 2 (a−3) (do a>3a>3 nên a-3>0a−3>0 \Rightarrow⇒ |3-a|=a-3∣3−a∣=a−3). c) \sqrt{27.48.(1-a)^2}=\sqrt{3^3.3.4^2.(1-a)^2}=\sqrt{3^4.4^2.(1-a)^2} 27.48.(1−a) 2 = 3 3 .3.4 2 .(1−a) 2 = 3 4 .4 2 .(1−a) 2 =\sqrt{3^4}.\sqrt{4^2}.\sqrt{(1-a)^2}=3^2.4.|1-a|= 3 4 . 4 2 . (1−a) 2 =3 2 .4.∣1−a∣ =36(a-1)=36(a−1) (do a>1a>1 \Rightarrow⇒ a-1>0a−1>0 nên |1-a|=a-1∣1−a∣=a−1). d) \dfrac{1}{a-b}.\sqrt{a^4.(a-b)^2}=\dfrac{1}{a-b}.\sqrt{a^4}.\sqrt{(a-b)^2} a−b 1 . a 4 .(a−b) 2 = a−b 1 . a 4 . (a−b) 2 =\dfrac{1}{a-b}.a^2.|a-b|= a−b 1 .a 2 .∣a−b∣ =\dfrac{1}{a-b}.a^2.(a-b)=a^2= a−b 1 .a 2 .(a−b)=a 2 (do a>ba>b \Rightarrow⇒ a-b>0a−b>0 nên |a-b|=a-b∣a−b∣=a−b).
a) (do nên ).
b)
(do nên ).
c)
(do nên ).
nên ).
(do