a, \(2\sqrt{a^2}-5a=2\left|a\right|-5a\)do a < 0
\(=-2a-5a=-7a\)
b, \(\sqrt{25a^2}+3a=\sqrt{\left(5a\right)^2}+3a=\left|5a\right|+3a\)do \(a\le0\)
TH1 : \(-5a+3a=-2a\)với \(a< 0\)
hoặc TH2 : \(5+3=8\)
c, \(\sqrt{9a^4}+3a^2=\sqrt{\left(3a^2\right)^2}+3a^2=\left|3a^2\right|+3a^2\)
\(=3a^2+3a^2=6a^2\)do \(3>0;a^2\ge0\forall a\Rightarrow3a^2\ge0\forall a\)
d, \(5\sqrt{4a^6}-3a^3=5\sqrt{\left(2a^3\right)^2}-3a^3\)
\(=5\left|2a^3\right|-3a^3=-10a^3-3a^3=-13a^3\)do \(a< 0\Rightarrow a^3< 0\)
a) \(2\sqrt{a^2}-5a\)=2\(|a|\)-5a = -2a-5a=-7a
b) \(\sqrt{25a^2}\) +3a = 5\(|a|\) + 3a=5a+3a=8a.
c) \(\sqrt{9a^4}\) + 3\(a^2\)=6\(a^2\)
d) \(5\sqrt{4a^6}\) - 3\(a^3\)=-13\(a^3\)
a, 2|a| - 5a = -2a - 5a = -7a
b, 5|a|+3a = 5a + 3a = 8a
c, |3a^2| + 3a^2 = 3a^2 + 3a^2 = 6a^2
d, 5|2a^3| - 3a^3 = 5. (-2a^3) - 3a^3 = -10a^3- 3a^3=-13a^3
a) \(2\sqrt{a^2}-5a=2\left(-a\right)-5a(do.a< 0nên\sqrt{a^2}=-a)=-7a\)
b) \(\sqrt{25a^2}+3a=5a+3a\left(do.a\le0nên\sqrt{25a^2}=5a\right)=8a\)
c) \(\sqrt{9a^4}+3a^2=3a^2+3a^2=6a^2\)
d) \(5\sqrt{4a^6}-3a^3=5.\left(-2a^3\right)-3a^3=-13a^3\)
a)
(do nên ).
b)
(do nên ).
c)
(do với mọi a nên ).
d)
(do nên ).
a)
(do nên )
b)
(do nên )
c)
(do với mọi a nên )
d)
(do nên )
a) = -2a - 5a = -7a
b) = -5a + 3a = -2a
c) 3a2 + 3a2= 6a2
d) -5.2a3 - 3a3 = -13a3
a)
(do nên ).
b)
(do nên ).
c)
(do với mọi a nên ).
d)
(do nên ).
a)
(do nên ).
b)
(do nên ).
c)
(do với mọi a nên ).
d)
(do nên ).
a) Ta có:
(vì nên )
Vậy .
b) Ta có:
.
(vì )
c) Ta có:
.
(Vì với mọi ).
d) Ta có:
(vì nên )
.
a) Ta có:
(vì nên )
Vậy .
b) Ta có:
.
(vì )
c) Ta có:
.
(Vì với mọi ).
d) Ta có:
(vì nên )
.
a) 2\(\sqrt{a^2}\) - 5a = 2\(\left|-a\right|\) -5a = 2(-a) - 5a ( vì a < 0 ) = -7a
b) \(\sqrt{25a^2}\) + 3a = \(\sqrt{5^2.a^2}\) + 3a = \(\sqrt{\left(5a\right)^2}\) + 3a = \(\left|5a\right|\) + 3a = 5a + 3a ( vì a ≤ 0 )
= 8a
c) \(\sqrt{9a^4}\) + 3a2 = \(\sqrt{\left(3a^2\right)^2}\) + 3a2 = \(\left|3a^2\right|\) + 3a2 = 3a2 + 3a2 ( vì a2 ≥ 0 ) = 6a2
d) 5\(\sqrt{4a^6}\) - 3a3 = 5\(\sqrt{\left(2a^3\right)^2}\) - 3a3 = 5\(\left|2a^3\right|\) - 3a3 = 5.( -2a3 ) - 3a3 ( vì a < 0 )
= -10a3 - 3a3 = -13a3
a) 2\(\sqrt{a^2}\) - 5a
= 2\(\left|a\right|\) - 5a
= - 2a - 5a = -7a
b) \(\sqrt{25a^2}\) +3a
= 5\(\left|a\right|\) + 3a
=5a + 3a = 8a
c) \(\sqrt{9a^4}\) +3a\(^2\)
= \(\sqrt{\left(3a^2\right)^2}\) +3a\(^2\)
= \(\left|3a^2\right|\) + 3a\(^2\)
= 3a\(^2\) + 3a\(^2\) = 6a\(^2\)
d) 5\(\sqrt{4a^6}\) - 3a\(^3\)
= 5\(\sqrt{\left(2a^3\right)^2}\) - 3a\(^3\)
= 5\(\left|2a^3\right|\) - 3a\(^3\)
= 5.( -2a\(^3\) ) - 3a\(^3\)
= - 10a\(^3\) - 3a\(^3\) = -13\(^3\)
a) \(2|a|-5a\) = -2a - 5a = -7a
b) \(\sqrt{\left(5a\right)^2}\) + 3a = \(|5a|+3a\) = -5a + 3a = -2a
c) \(\sqrt{\left(3a^2\right)}+3a^2\) = \(|3a|+3a^3\) = 3a + 3a2 = 3a(1+a)
d) \(5\sqrt{\left(2a^4\right)}-3a^3\) = \(5|2a^4|-3a^3\) = 10a4-3a3 = a3(10a - 3)
a) -7a
b) 8a
c)6a^2
d)-13a^3
a,=2|a|-5a
=-2a-5a=-7a
b,=5|a|+3a
=5a+3a=8a
a)
(do nên ).
b)
(do nên ).
c)
(do với mọi a nên ).
d)
(do nên
\(a) 2\sqrt{a^2} - 5a2 a 2 −5a = 2|a|-5a=2∣a∣−5a = -2a - 5a = -7a=−2a−5a=−7a (do a < 0a<0 nên |a| = -a∣a∣=−a). b) \sqrt{25a^2} + 3a 25a 2 +3a = 5|a| + 3a=5∣a∣+3a = 5a + 3a = 8a=5a+3a=8a (do a \ge 0a≥ 0 nên |a| = a∣a∣=a). c) \sqrt{9a^4} + 3a^2 9a 4 +3a 2 = \sqrt{(3a^2)^2} + 3a^2= (3a 2 ) 2 +3a 2 = |3a^2| + 3a^2=∣3a 2 ∣+3a 2 = 3a^2 + 3a^2 = 6a^2=3a 2 +3a 2 =6a 2 (do a^2 \ge 0a 2 ≥ 0 với mọi a nên |3a^2| = 3a^2∣3a 2 ∣=3a 2 ). d) 5\sqrt{4a^6} - 3a^35 4a 6 −3a 3 = 5\sqrt{(2a^3)^2} - 3a^3=5 (2a 3 ) 2 −3a 3 = 5|2a^3| - 3a^3=5∣2a 3 ∣−3a 3 =5.(-2a^3)-3a^3=-10a^3-3a^3=-13a^3=5.(−2a 3 )−3a 3 =−10a 3 −3a 3 =−13a 3 (do a < 0a<0 \Rightarrow⇒ 2a^3<02a 3 <0 nên |2a^3| = – 2a^3∣2a 3 ∣=–2a 3 ). \)