a/ \(\frac{\sqrt{2}-\sqrt{3}}{2\sqrt{3}}=\frac{\sqrt{3}\left(\sqrt{2}-\sqrt{3}\right)}{2.3}=\frac{\sqrt{6}-\sqrt{9}}{6}=\frac{\sqrt{6}-3}{6}\)
b/ \(\frac{x+a\sqrt{x}}{a\sqrt{x}}=\frac{\sqrt{x}\left(x+a\sqrt{x}\right)}{a.\left|x\right|}=\frac{x\sqrt{x}+a\left|x\right|}{a\left|x\right|}\)
c/ \(\frac{x-y}{\sqrt{x}-\sqrt{y}}=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2\left(\sqrt{x}-\sqrt{y}\right)}{\left|x\right|-\left|y\right|}\)
d/ \(\frac{x}{2\sqrt{x}-3\sqrt{y}}=\frac{x\left(2\sqrt{x}+3\sqrt{y}\right)}{\left(2\sqrt{x}-3\sqrt{y}\right)\left(2\sqrt{x}+3\sqrt{y}\right)}=\frac{2x\sqrt{x}+3x\sqrt{y}}{4\left|x\right|-9\left|y\right|}\)