a) \(=\sqrt{\left(3\sqrt{5}-2\right)^2}+\sqrt{\left(3\sqrt{5}+2\right)^2}=3\sqrt{5}-2+3\sqrt{5}+2=6\sqrt{5}\)
b) \(=\sqrt{\left(2\sqrt{5}+3\right)^2}+\sqrt{\left(2\sqrt{5}-3\right)^2}=2\sqrt{5}+3+2\sqrt{5}-3=4\sqrt{5}\)
a) \(=\sqrt{\left(3\sqrt{5}-2\right)^2}+\sqrt{\left(3\sqrt{5}+2\right)^2}=3\sqrt{5}-2+3\sqrt{5}+2=6\sqrt{5}\)
b) \(=\sqrt{\left(2\sqrt{5}+3\right)^2}+\sqrt{\left(2\sqrt{5}-3\right)^2}=2\sqrt{5}+3+2\sqrt{5}-3=4\sqrt{5}\)
a) A=\(\sqrt{\left(4-\sqrt{15}\right)^2+\sqrt{15}}\)
b) B=\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)^2}\)
c) C=\(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
d)D=\(\sqrt{29+12\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)
ai làm nhanh giúp em với
\(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)
\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)^2}\)
\(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
\(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
\(5\sqrt{25a^2}-25a\)
\(\sqrt{16a^4}+6a^2\)
Tính
a,\(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
b,\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)
c,\(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}\)
d,\(\sqrt{13-\sqrt{160}}+\sqrt{53+4\sqrt{90}}\)
a)\(\sqrt{29-12\sqrt{5}}\)
b) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
1)Tính:
a) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
b) \(\sqrt{6+2\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)
c)\(\sqrt{2 +\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
Chứng minh rằng các số sau đây là số nguyên:
A = \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
B = \(\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
Phân tích :
1) \(\sqrt{29+12\sqrt{5}}\) - \(\sqrt{29-12\sqrt{5}}\)
2) \(\sqrt{8-2\sqrt{15}}\)- \(\sqrt{23-4\sqrt{15}}\)
3) \(\sqrt{8-2\sqrt{15}}\) + \(\sqrt{48+6\sqrt{15}}\)
4) \(\sqrt{49-5\sqrt{96}}\)+\(\sqrt{49+5\sqrt{96}}\)
5) \(\sqrt{15-6\sqrt{15}}\)+\(\sqrt{33-12\sqrt{6}}\)
6) \(\sqrt{16-6\sqrt{7}}\)+\(\sqrt{64-24\sqrt{7}}\)
7) \(\sqrt{14-6\sqrt{5}}\)+\(\sqrt{14+6\sqrt{5}}\)
8) \(\sqrt{1-6\sqrt{2}}\)+\(\sqrt{11-6\sqrt{2}}\)
9) \(\sqrt{13+4\sqrt{10}}\)+\(\sqrt{13-4\sqrt{10}}\)
10) \(\sqrt{46-6\sqrt{5}}\)+\(\sqrt{29-12\sqrt{5}}\)
Tính:
\(a)E=\sqrt{\left|12\sqrt{5}-29\right|}-\sqrt{12\sqrt{5}+29}\\ b)\sqrt{\left|40\sqrt{2}-57\right|}-\sqrt{40\sqrt{2}+57}\)
Tính : \(\sqrt{12\sqrt{5}-29}-\sqrt{12\sqrt{5+29}}\)