Tính \(y=\frac{1}{\sqrt{x}+\sqrt{x+1}}+\frac{1}{\sqrt{x+2}-\sqrt{x+1}}+\frac{1}{\sqrt{x+3}+\sqrt{x+2}}+..+\frac{1}{\sqrt{x+2008}+\sqrt{x+2007}}\)với x=\(\sqrt[2007]{2008}\)
Bài 1. So sánh
a) \(\sqrt{2009}-\sqrt{2008}\)và \(\sqrt{2007}-\sqrt{2006}\)
b) \(\sqrt{11+\sqrt{96}}\)và \(\frac{2\sqrt{2}}{1+\sqrt{2}-\sqrt{3}}\)
Bài 2. Tính tổng
\(T=\frac{1}{1-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-...+\frac{1}{\sqrt{2007}-\sqrt{2008}}\)
\(D=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{120\sqrt{121}+121\sqrt{120}}\)
ai cứu mk ikk
Mọi người giúp em bài này với:
Tính:
\(\sqrt{1+2007^2+\frac{2007^2}{2008^2}}+\frac{2007}{2008}\)
BÀI 1: Tính gần đúng:
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{2008\sqrt{2007}+2007\sqrt{2008}}\)
BÀI 2: Tìm số dư của phép chia: \(3^{2^{2009}}\) cho 11.
BÀI 3: Cho hình thoi có chu vi là 37cm, tỉ lệ hai đường chéo là 2:3. Tính giá trị đúng diện tích S của hình thoi.
MỌI NGƯỜI GIÚP MÌNH NHÉ!!!!
Giúp em với: Tính
\(\sqrt{1+2007^2+\frac{2007^2}{2008^2}}+\frac{2007}{2008}\)
Rút gọn biểu thức:
\(Q=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+.....+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)
chứng minh rằng: \(P=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2008\sqrt{2007}}\)không phải là số nguyên tố
\(A=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+....+\frac{1}{\sqrt{2001}+\sqrt{2005}}+\)\(\frac{1}{\sqrt{2005}+\sqrt{2009}}\)
Rút gọn biểu thức A
\(B=x^3-3x+2000\). Rút gọn B biết \(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
Mong mọi người giúp đỡ mình ạ , mình rất cần ạ
Rút gọn các biểu thức sau:
a,\(A=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{2010\sqrt{2009}+2009\sqrt{2010}}\)
b,\(B=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{2006}+\sqrt{2007}}\)
c,\(C=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)