\(\frac{2006}{2005}.\frac{3}{4}-\frac{3}{4}.\frac{1}{2005}=\frac{3}{4}\left(\frac{2006}{2005}-\frac{1}{2005}\right)=\frac{3}{4}.1=\frac{3}{4}\)
\(\frac{2006}{2005}.\frac{3}{4}-\frac{3}{4}.\frac{1}{2005}=\frac{3}{4}\left(\frac{2006}{2005}-\frac{1}{2005}\right)=\frac{3}{4}.1=\frac{3}{4}\)
Tính \(A=\frac{2008+\frac{2007}{2}+\frac{2006}{3}+\frac{2005}{4}+...+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)
Tính \(A=\frac{2008+\frac{2007}{2}+\frac{2006}{3}+\frac{2005}{4}+...+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}\)
Tính \(1\frac{1}{2}.1\frac{1}{3}.1\frac{1}{4}.1\frac{1}{5}.1\frac{1}{2005}.1\frac{1}{2006}.1\frac{1}{2007}\)
tính nhanh :
a, \(\left[1+\frac{1}{2005}\right]x\left[1+\frac{1}{2006}\right]x\left[1+\frac{1}{2007}\right]x\left[1+\frac{1}{2008}\right]x\left[1+\frac{1}{2009}\right]\)
Tính giá trị biểu thức sau:
\(\frac{2008+\frac{2007}{2}+\frac{2006}{3}+\frac{2005}{4}+...+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}\)
\(A=\frac{2008+\frac{2007}{2}+\frac{2006}{3}+\frac{2005}{4}+...+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}\)
a)\(\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x\left(1-\frac{1}{5}\right)x......x\left(1-\frac{1}{18}\right)x\left(1-\frac{1}{19}\right)x\left(1-\frac{1}{20}\right)\)
b)\(1\frac{1}{2}x1\frac{1}{3}x1\frac{1}{4}x1\frac{1}{5}x......x1\frac{1}{2005}x1\frac{1}{2006}x1\frac{1}{2007}\)
\(A=\frac{2008+\frac{2007}{2}+\frac{2006}{3}+\frac{2005}{4}+...+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}\)
\(y=\frac{2008+\frac{2007}{2}+\frac{2006}{3}+\frac{2005}{4}+...+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}\)