Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Như An

Bài 1 Tính giá trị biểu thức :

A = 3/1.4 + 5/4.9 + 7/9.16 + 9/16.25 + 11/25.36

B = 3/1.4 + 3/4.7 + ... + 3/100.103

C = 3/1.4 + 6/4.10 + 9/10.19 + 12/19.31 + 15/31.46 + 18/46.64

Bài 2 Chứng minh rằng :

1/1.2 + 1/3.4 + 1/5.6 + ... + 1/49.50 = 1/26 + 1/27 + 1/28 + ... + 1/50

Lấp La Lấp Lánh
18 tháng 9 2021 lúc 18:12

Bài 1:

\(A=\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+\dfrac{9}{16.25}+\dfrac{11}{25.36}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{36}\)

\(=1-\dfrac{1}{36}=\dfrac{35}{36}\)

\(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\)

\(=1-\dfrac{1}{103}=\dfrac{102}{103}\)

\(C=\dfrac{3}{1.4}+\dfrac{6}{4.10}+\dfrac{9}{10.19}+\dfrac{12}{19.31}+\dfrac{15}{31.46}+\dfrac{18}{46.64}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{31}+\dfrac{1}{31}-\dfrac{1}{46}+\dfrac{1}{46}-\dfrac{1}{64}\)

\(=1-\dfrac{1}{64}=\dfrac{63}{64}\)

Bài 2: 

\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}\left(đpcm\right)\)

 


Các câu hỏi tương tự
Linh Nguyễn
Xem chi tiết
GT 6916
Xem chi tiết
Linh Nguyễn
Xem chi tiết
nguyễn hoài thu
Xem chi tiết
lê thị trà giang
Xem chi tiết
Nguyễn Hoài Thương
Xem chi tiết
Nguyễn Hàn My
Xem chi tiết
Phạm Thùy Dung
Xem chi tiết
Pixiv Vic
Xem chi tiết