1.
PT $\Leftrightarrow x^2+3xy+(3y^2-3y)=0$
Coi đây là pt bậc 2 ẩn $x$
PT có nghiệm $\Leftrightarrow \Delta=(3y)^2-4(3y^2-3y)\geq 0$
$\Leftrightarrow -3y^2+12y\geq 0$
$\Leftrightarrow -y^2+4y\geq 0$
$\Leftrightarrow 0\leq y\leq 4$
Vì $y$ nguyên nên $y\in \left\{0;1;2;3;4\right\}$
Để pt có nghiệm nguyên thì $\Delta$ là scp. Thử các giá trị $y$ trên vô $\Delta$ ta thấy $y=0; 2;4$
Thay vô pt ban đầu thì:
$y=0\Rightarrow x=0$ (thỏa)
$y=2\Rightarrow x=-3\pm \sqrt{3}$ (loại)
$y=4\Rightarrow x=-6$ (thỏa)
2.
PT $\Leftrightarrow x^2-2xy+(5y^2-y-1)=0$
Coi đây là pt bậc 2 ẩn $x$.
$\Delta'=y^2-(5y^2-y-1)=-4y^2+y+1$
Để pt có nghiệm thì $\Delta'\geq 0$
$\Leftrightarrow -4y^2+y+1\geq 0$
$\Leftrightarrow \frac{1-\sqrt{17}}{8}\leq y\leq \frac{1+\sqrt{17}}{8}$
Mà $y$ nguyên nên $y=0$
Thay vô pt ban đầu ta có $x^2=1\Rightarrow x=\pm 1$
Vậy $(x,y)=(\pm 1,0)$