bài 1 Tìm tất cả các cặp số tự nhiên khác 0, sao cho ƯCLN của hai số đó là 8 và tích của hai số là 384.
Vì ƯCLN của hai số đó là 8 nên hai số đó là bội của 8, ta giả sử a = 8m; b = 8n với ƯCLN(m, n) = 1 và do cặp số tự nhiên khác 0 nên m,n ∈ N*
Tích của hai số là 384 nên a.b = 384 hay 8m. 8n = 384
64. m. n = 384
m. n = 384: 64
m. n = 6
Ta có 6 = 1. 6 = 2. 3
Do đó (m; n) ∈ {(1;6);(6;1);(2;3);(3;2)}
Ta có bảng sau:
m | 1 | 6 | 2 | 3 |
n | 6 | 1 | 3 | 2 |
a = 8m | 8 | 48 | 16 | 24 |
b = 8n | 48 | 8 | 24 | 16 |
Vậy các cặp số tự nhiên thỏa mãn đề bài là (8; 48); (48; 8); (16; 24); (24; 16).
bài 2 Tìm tất cả các số tự nhiên a khác 0 và b khác 0 sao cho a + b = 96 và ƯCLN(a, b) = 16
Vì ƯCLN(a, b) = 16 ⇒ a và b là bội của 16, ta giả sử a = 16m; b = 16n với
ƯCLN(m, n) = 1 và do các số tự nhiên khác 0 nên m,n ∈ N*
Ta có a + b = 96 nên 16. m + 16. n = 96
16. (m + n) = 96
m + n = 96: 16
m + n = 6
Ta có bảng sau:
m | 1 | 2 | 3 | 4 | 5 |
n | 5 | 4 | 3 | 2 | 1 |
ƯCLN(m, n) = 1 | TM | KTM | KTM | KTM | TM |
+) Với m = 1; n = 5 ta được a = 1. 16 = 16; b = 5. 16 = 80
+) Với m = 5; n = 1, ta được a = 5. 16 = 80; b = 1. 16 = 16
Đăng à , sống đẹp lên , méc thầy nha
mày t i c k cho gái mà ko k tau nha
chà chà , đăng hè , gớm đó