a) \(A=2x^2-8x+7\)
\(A=2\left(x^2-4x+\frac{7}{2}\right)\)
\(A=2\left(x^2-2\cdot x\cdot2+2^2-\frac{1}{2}\right)\)
\(A=2\left[\left(x-2\right)^2-\frac{1}{2}\right]\)
\(A=2\left(x-2\right)^2-1\ge-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Đúng 0
Bình luận (0)
b) \(B=3x^2-3x+1\)
\(B=3\left(x^2-x+\frac{1}{3}\right)\)
\(B=3\left(x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{1}{12}\right)\)
\(B=3\left[\left(x-\frac{1}{2}\right)^2+\frac{1}{12}\right]\)
\(B=3\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
Đúng 0
Bình luận (0)