Bài 1: a = 3 (ko chắc)
Bài 2:
a/ (x,y) = (0,0); (\(\frac{-1}{2}\),1)
b/ xy+3x-7y = 21
x(y+3)-7y-21 = 21-21
x(y+3)-7(y+3) = 0
(x-7)(y+3) = 0
=> x-7 = 0
x = 0+7
x = 7
hoặc y+3 = 0
y = 0-3
y = -3
Vậy x=7 thì y bất kì
y = -3 thì x bất kì
Bài 1: a = 3 (ko chắc)
Bài 2:
a/ (x,y) = (0,0); (\(\frac{-1}{2}\),1)
b/ xy+3x-7y = 21
x(y+3)-7y-21 = 21-21
x(y+3)-7(y+3) = 0
(x-7)(y+3) = 0
=> x-7 = 0
x = 0+7
x = 7
hoặc y+3 = 0
y = 0-3
y = -3
Vậy x=7 thì y bất kì
y = -3 thì x bất kì
tìm các số nguyên a sao cho
\(\left(a^2-1\right)\left(a^2-4\right)\left(a^2-7\right)\left(a^2-10\right)< 0\)
Tìm a,b,c biết
a, \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2< =0\)
b,\(\left(a-7\right)^2+\left(3b+2\right)^2+\left(4c-5\right)^6< =0\)
c,\(\left(12a-9\right)^2+\left(8b+1\right)^4+\left(c+19\right)^6< =0\)
d,\(\left(7b-3\right)^4+\left(21a-6\right)^4+\left(18c+5\right)^6< =0\)
tìm số nguyên a
\(\left(a^2-1\right)\left(a^2-4\right)\left(a^2-7\right)\left(a^2-10\right)< 0\)
Bài 1:
a,\(3^7\) : \(3^5\)- \(\left(\dfrac{5}{17}\right)^0\) b,\(\left(\dfrac{5}{2}\right)^{13}\) : \(\left(\dfrac{1}{2}+2\right)^3\) c, 8.\(\left(\dfrac{1}{4}\right)^3\) +\(\left(\dfrac{2}{27}\right)^0\) - \(\dfrac{1}{8}\)
Bài 2 :
a, \(\dfrac{3^4.4^4}{6^4}\) b,\(\dfrac{15^3}{10^3}\) c, \(\dfrac{4^2.12^5}{9^2.2^{10}}\) d, \(\dfrac{6^2+5.2^2+4}{15}\)
Bài 3 :
a, \(\dfrac{\left(\dfrac{2}{3}\right)^3.\left(\dfrac{-3}{4}\right)^2.\left(-1\right)^5}{\left(\dfrac{2}{5}\right)^2.\left(\dfrac{-5}{12}\right)^2}\) b,\(\dfrac{6^6+6^3.3^3+3^6}{-73}\)
Mọi người giúp mình nhé mình sẽ cho bạn 1 like
Bài 1 :Rút gọn
\(\left(4x^2-3y\right)a2y-\left(3x^2-4y\right)3y\)
\(4x^2\left(5x-3y\right)-x^2\left(4x+y\right)\)
\(2ax^2-a\left(1+2x^2\right)-\left\{a-x\left(x+a\right)\right\}\)
Bài 2:Tìm x
a)\(2x\left(x+1\right)-x^2\left(x+2\right)+x^3-x+1=0\)
b)\(4x\left(3x+2\right)-6x\left(2x+5\right)+21\left(x-1\right)=0\)
Bài 3:Rút gọn
\(x\left(1+x+x^2+...+x^9\right)-\left(1+x+x^2+...+x^9\right)\)
Bài 1: Cho 3 đơn thức M=-5xy; N=11xy2:;P=\(\frac{7}{5}\)x2y3.CMR 3 đơn thức này ko thể cùng gt dương
Bài 2: Thu gọn các đơn thức trong biểu thức đại số
D=\(\frac{\left(3x^4y^3\right)^2\left(\frac{1}{6}x^2y\right)+\left(8x^{n-9}\right)\left(-2x^{9-n}\right)}{15x^3y^2\left(0,4ax^2y^2z^2\right)}\) (với axyz\(\ne\)0)
Bài 3: Tính tích các đơn thức rồi cho biết hệ số và bậc của đơn thức đối với tập hợp các biến số (a,b,c là hằng số)
a)\(\left(-\frac{1}{2}\left(a-1\right)x^3y^4z^2\right)^5\)
b)\(\left(a^2b^2xy^2z^{n-1}\right)\left(-b^3cx^4z^{7-n}\right)\)
c)\(\left(\frac{-9}{10}a^3x^2y\right)\left(\frac{-5}{3}ax^5y^2z\right)^3\)
Bài 11 : Tìm GTNN của của các biểu thức sau :
a ) \(A=\left|x+3\right|+\left|2x-5\right|+\left|x-7\right|.\)
b ) \(B=\left|x+2\right|+\left|3x-4\right|+\left|x-2\right|+5\)
c ) \(M=\left|x+2\right|+\left|x-3\right|\)
d ) \(C=\left|2x+5\right|+\left|2x+1\right|+\left|2x-7\right|+\left|2x-4\right|+4\)
e ) \(D=\left|3x-6\right|+\left|3x-9\right|+\left|3x-12\right|+\left|3x-15\right|+2018\)
Bài 1 : Tính
\(a,\left(\frac{1^{ }}{2}\right)^{15}\cdot\left(\frac{1}{4}\right)^{20}\)
b, \(\left(\frac{1}{9}\right)^{25}:\left(\frac{1}{3}\right)^{30}\)
Bài 2 : Chứng minh rằng 7^6 + 7^5 - 7^4 chia hết cho 55
Tính A = 1+5+5^2 + 5^3 +...+5^49+5^50
bÀI 3
a, tìm giá trị lớn nhất của biểu thức :
\(A=\frac{3}{\left(X+2\right)^2+4}\)
B, tÌM GIÁ trị nhỏ nhất :
\(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Bài 4 : Chứng minh rằng góc tạo bỏi 2 tia phân giác của 2 góc kề bù là góc vuông
Tìm x,y biết :
a) \(\left|3.x-\dfrac{1}{2}\right|+\left|\dfrac{1}{4}.y+\dfrac{3}{5}\right|\)= 0
b)\(\left|\dfrac{3}{2}.x+\dfrac{1}{9}\right|+\left|\dfrac{5}{7}.y-\dfrac{1}{2}\right|\le0\)